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1 Introduction

Recently, the second author obtained certain existence and location results for the
Stackelberg equilibria in the Euclidean framework, see [9]. More precisely, the
existence of solutions for the leader-follower game has been obtained via the study
of certain variational inequalities defined on the strategy sets by using the variational
backward induction method.

The purpose of the present study is to extend the analytical results from [9] to games
defined on strategy sets which are embedded in a geodesic convex manner into cer-
tain Riemannian manifolds. Similar studies can be found in the literature, where
certain variational arguments are applied to study equilibrium problems on Rieman-
nian manifolds, see [4], [7], [11], [10] and references therein.

For simplicity, in the present paper we shall consider only two players although our
arguments can be extended to several players as well. Let K1 ⊂ M1 and K2 ⊂ M2
be two sets in the Riemannian manifolds (M1,g1) and (M2,g2), respectively, and let
h1,h2 : M1×M2 → R be the payoff functions for the two players. As we already
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know from the backward induction method, the first step (for the follower) is to find
the response set

RSE(x1) = {x2 ∈ K2 : h2(x1,y)−h2(x1,x2)≥ 0, ∀y ∈ K2}

for every fixed x1 ∈ K1. If RSE(x1) 6= /0 for every x1 ∈ K1, the next step (for the
leader) is to minimize the map x 7→ h1(x,r(x)) on K1 where r is a fixed selection
function of the set-valued map x 7→RSE(x); more precisely, the objective of the first
player is to determine the set

SSE = {x1 ∈ K1 : h1(x,r(x))−h1(x1,r(x1))≥ 0, ∀x ∈ K1} .

Since the location of the sets RSE(x1) and SSE is not an easy task, we shall intro-
duce further sets related to them by variational inequalities defined on the Rieman-
nian manifolds. Let us assume that h2 : M1×M2→ R is a function of class C1; for
every x1 ∈ K1, we introduce the set

RSV (x1) =

{
x2 ∈ K2 : g2

(
∂h2

∂x2
(x1,x2),exp−1

x2
(y)
)
≥ 0, ∀y ∈ K2

}
.

Here and in the sequel, exp denotes the usual exponential function in Riemannian
geometry. According to [4] and [5], it is more easier to determine the set RSV (x1)
than RSE(x1). Moreover, usually we have that RSE(x1) ⊂ RSV (x1), thus we shall
choose the appropriate Stackelberg equilibrium candidates from the elements of the
latter set. Finally, by imposing further curvature assumptions on the Riemannian
manifolds we are working on, we are able to characterize the elements of the set
RSV (x1) by the fixed points of a suitable set-valued map which involves the metric
projection map into the set K2. In fact, we shall assume that the strategy sets are em-
bedded into non-positively curved Riemannian manifolds where two basic proper-
ties of the metric projection will be deeply exploited; namely, the non-expansiveness
and the so-called Moskovitz-Dines property (see [8]); for further details, see Sec-
tion 2. Having this fixed-point characterization, we will be able to apply various
fixed point theorems on (acyclic) metric spaces in order to find elements of the set
RSV (x1). We emphasize that projection-like methods for Nash equilibria have been
developed in the Euclidean context in [1], [15], [16].

We assume finally that h1 : M1×M2 → R is a function of class C1 and for every
x1 ∈ K1 we have that RSV (x1) 6= /0. If we are able to choose a C1-class selection
r : K1→ K1 of the set-valued map RSV , we also introduce the set

SSV =

{
x1 ∈ K1 : g1

(
∂h1

∂x1
(x1,r(x1)),exp−1

x1
(y)
)
≥ 0, ∀y ∈ K1

}
.

In particular, SSV contains the optimal strategies of the leader, i.e., the minimizers
for the map x 7→ h1(x,r(x)) on K1.

Section 2 contains some basic notions and results from Riemannian geometry which
are needed for our investigations: geodesics, curvature, metric projections, Moskovitz-
Dines property, etc. Finally, in Section 3 we present the main results of the paper
concerning the strategy of the follower.
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2 Preliminaries

2.1 Elements from Riemannian manifolds

Let (M,g) be a connected m-dimensional Riemannian manifold, m ≥ 2, and let
T M = ∪p∈M(p,TpM) and T ∗M = ∪p∈M(p,T ∗p M) be the tangent and cotangent bun-
dles to M. If ξ ∈ T ∗p M then there exists a unique Wξ ∈ TpM such that

〈ξ ,V 〉g,p = gp(Wξ ,V ) for all V ∈ TpM. (1)

Due to (1), the elements ξ and Wξ are identified. The norms on TpM and T ∗p M are
defined by

‖ξ‖g = ‖Wξ‖g =
√

g(Wξ ,Wξ ).

It is clear that for every V ∈ TpM and ξ ∈ T ∗p M,

|〈ξ ,V 〉g| ≤ ‖ξ‖g‖V‖g. (2)

Let h : M → R be a C1 function at p ∈ M; the differential of h at p, denoted by
dh(p), belongs to T ∗p M and is defined by

〈dh(p),V 〉g = g(gradh(p),V ) for all V ∈ TpM.

Let γ : [0,r] → M be a C1 path, r > 0. The length of γ is defined by Lg(γ) =∫ r
0 ‖γ̇(t)‖gdt. For any two points p,q ∈M, let

dg(p,q) = inf{Lg(γ) : γ is a C1 path joining p and q in M}.

The function dg : M×M→ R clearly verifies the properties of the metric function.
For every p∈M and r > 0, the open ball of center p∈M and radius r > 0 is defined
by

Bg(p,r) = {q ∈M : dg(p,q)< r}.

A C∞ parameterized path γ is a geodesic in (M,g) if its tangent γ̇ is parallel along
itself, i.e., ∇γ̇ γ̇ = 0. Here, ∇ is the Levi-Civita connection. The geodesic segment
γ : [a,b]→ M is called minimizing if Lg(γ) = dg(γ(a),γ(b)). From the theory of
ODE we have that for every V ∈ TpM, p ∈M, there exists an open interval IV 3 0
and a unique geodesic γV : IV → M with γV (0) = p and γ̇V (0) = V. On account of
[2, p. 64], we introduce the exponential map expp : TpM→M as expp(V ) = γV (1).
Moreover,

d expp(0) = idTpM.

In particular, for every two points q1,q2 ∈M which are close enough to each other,
we have

‖exp−1
q1
(q2)‖g = dg(q1,q2). (3)

Let K ⊂M be a non-empty set. Let

PK(q) = {p ∈ K : dg(q, p) = inf
z∈K

dg(q,z)}
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be the set of metric projections of the point q ∈ M to the set K. According to the
theorem of Hopf-Rinow, if (M,g) is complete, then for any closed set K ⊂ M we
have that card(PK(q))≥ 1 for every q ∈M. The map PK is non-expansive if

dg(p1, p2)≤ dg(q1,q2) for all q1,q2 ∈M and p1 ∈ PK(q1), p2 ∈ PK(q2).

In particular, when PK is non-expansive, then K is a Chebishev set, i.e., card(PK(q))=
1 for every q ∈M.

The set K ⊂M is geodesic convex if every two points q1,q2 ∈ K can be joined by a
unique minimizing geodesic whose image belongs to K. Clearly, relation (3) holds
for every q1,q2 ∈ K in a geodesic convex set K since exp−1

qi
is well-defined on K,

i ∈ {1,2}. The function f : K → R is convex, if f ◦ γ : [0,1]→ R is convex in the
usual sense for every geodesic γ : [0,1]→ K once K ⊂M is a geodesic convex set.

A non-empty closed set K ⊂ M verifies the Moskovitz-Dines property if for fixed
q ∈M and p ∈ K the following two statements are equivalent:

(MD1) p ∈ PK(q);

(MD2) If γ : [0,1]→M is the unique minimal geodesic from γ(0) = p ∈ K to γ(1) =
q, then for every geodesic σ : [0,δ ]→ K (δ ≥ 0) emanating from the point p,
we have g(γ̇(0), σ̇(0))≤ 0.

A Riemannian manifold (M,g) is a Hadamard manifold if it is complete, simply
connected and its sectional curvature is non-positive. We recall that on a Hadamard
manifold (M,g), if h(p) = d2

g(p, p0), p0 ∈M is fixed, then

gradh(p) =−2exp−1
p (p0). (4)

It is well-known that on a Hadamard manifold (M,g) every geodesic convex set is
a Chebyshev set. Moreover, we have

Proposition 1. ([3], [13]) Let (M,g) be a finite-dimensional Hadamard manifold,
K ⊂M be a closed set. The following statements hold true:

(i) If K ⊂M is geodesic convex, it verifies the Moskovitz-Dines property;

(ii) PK is non-expansive if and only if K ⊂M is geodesic convex.

2.2 Basic properties of the response sets

In the sequel we shall establish some basic properties of the response sets by using
some elements from the theory of variational inequalities on Riemannian manifolds.

Lemma 1. Let (Mi,gi) be Riemannian manifolds, hi : M1×M2 → R be functions
of class C1, and Ki ⊂Mi closed, geodesic convex sets, i = 1,2. Then the following
assertions hold:

(i) RSE(x1)⊆RSV (x1) for every x1 ∈ K1;

(ii) RSE(x1) = RSV (x1) when h2(x1, ·) is convex on K2 for some x1 ∈ K1;
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(iii) SSE ⊆SSV when x 7→RSV (x) is a single-valued function which has a C1−extension
to an arbitrary open neighborhood D1 ⊂M1 of K1.

Proof. (i) Let x2 ∈RSE(x1) be an arbitrarily fixed element, i.e., h2(x1,y)≥ h2(x1,x2)
for all y ∈ K2. By definition, we have that

g2

(
∂h2

∂x2
(x1,x2),exp−1

x2
(y)
)
= lim

t→0+

h2(x1,expx2
(t exp−1

x2
(y))−h2(x1,x2)

t
, ∀y ∈ K2.

Since K2 is geodesic convex, the element expx2
(t exp−1

x2
(y) ∈ K2 for every t ∈ [0,1]

whenever y ∈ K2. By the above expression one has that for every y ∈ K,

g2

(
∂h2

∂x2
(x1,x2),exp−1

x2
(y)
)
≥ 0,

which implies that RSE(x1)⊆RSV (x1) for all x1 ∈ K1.

(ii) Since the function h2(x1, .) is convex and of class C1, one has

h2(x1,y)−h2(x1,x2)≥ g2

(
∂h2

∂x2
(x1,x2),exp−1

x2
(y)
)

for all y ∈ K2, see [14]. Taking into account that x2 ∈RSV (x1), one has that

g2

(
∂h2

∂x2
(x1,x2),exp−1

x2
(y)
)
≥ 0

for all y ∈ K2. Thus, one has h2(x1,y)− h2(x1,x2) ≥ 0 for all y ∈ K2, i.e., x2 ∈
RSE(x1).

(iii) The proof is similar to (i). 4

In the sequel, we shall prove that the elements of the set RSV (x1) can be obtained
as the fixed points of a carefully choosen map. More precisely, for a fixed x1 ∈ K1
and α > 0, let F x1

α : K2→ K2 be defined by

F x1
α (x) = PK2

(
expx

(
−α

∂h2

∂x2
(x1,x)

))
. (5)

Theorem 1. Let (M1,g1) be a Riemannian manifold, and (M2,g2) be a Hadamard
manifold. Let h2 : M1×M2 → R be a function of class C1 and Ki ⊂ Mi closed,
geodesic convex sets, i = 1,2. Let x1 ∈K1. The following statements are equivalent:

(i) x2∈RSV (x1);

(ii) F x1
α (x2) = x2 for all α > 0;

(iii) F x1
α (x2) = x2 for some α > 0.

Proof. Let us fix x2∈RSV (x1) arbitrarily, where x1 ∈ K1. By definition, we have
that

g2

(
−α

∂h2

∂x2
(x1,x2),exp−1

x2
(y)
)
≤ 0, ∀y ∈ K2,
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for all/some α > 0. Let γ,σ : [0,1]→M2 be the unique minimal geodesics defined
by

γ(t) = expx2
(−tα

∂h2

∂x2
(x1,x2))

and
σ(t) = expx2

(t exp−1
x2
(y))

for any fixed α > 0 and y ∈ K2. Since K2 is geodesic convex in (M2,g2), then
Imσ ⊂ K2 and

g2(γ̇(0), σ̇(0)) = g2

(
−α

∂h2

∂x2
(x1,x2),exp−1

x2
(y)
)
,

i.e., (MD2) holds. By the Moskovitz-Dines property, see Proposition 1, one has that

x2 = γ(0) ∈ PK2(γ(1)) = PK2

(
expx2

(
−α

∂h2

∂x2
(x1,x2)

))
= F x1

α (x2).

Since card(F x1
α (x2)) = 1, the proof is complete. 4

Remark. Note that for all α > 0,

RSV (x1) =

{
x2 ∈ K2 : PK2

(
expx2

(
−α

∂h2

∂x2
(x1,x2)

))
= x2

}
.

3 Follower strategy: existence of equilibria

3.1 Compact case

Theorem 2. (Compact case) Let (Mi,gi) be Hadamard manifolds, hi : M1×M2→R
be functions of class C1 and Ki ⊂Mi compact, geodesic convex sets, i = 1,2. Then
the following statements hold:

(i) RSV (x1) 6= /0 for every x1 ∈ K1;

(ii) SSV 6= /0, whenever RSV (x1) is a singleton for every x1 ∈ K1 and the map
x 7→RSV (x) has a C1−extension to an arbitrary open neighborhood D1 ⊂M1
of K1.

Proof. (i) Fix x1 ∈ K1 and α > 0. Since K2 is a Chebishev set and PK2 is globally
Lipschitz, we see that F x1

α : K2→ K2 is a single-valued continuous function; in par-
ticular, F x1

α : K2→ K2 has a closed graph. Moreover, since K2 is geodesic convex,
it is contractible, thus an acyclic set. Now, we may apply the fixed point theorem of
Begle on the compact set K2, obtaining that F x1

α has at least a fixed point x2 ∈ K2.
Due to Theorem 1, x2 ∈RSV (x1), which concludes the proof of (i).

(ii) For some β > 0, we introduce the map Gβ : K1→ K1 defined by

Gβ (x) = PK1

(
expx

(
−β

∂h1

∂x
(x,RSV (x))

))
.
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Since card(RSV (x)) = 1 for every x ∈ K1 and the map x 7→ RSV (x) has a C1-
extension to an arbitrary D1 ⊂M1 of K1, the function Gβ is well-defined for every
β > 0. By the hypotheses, the function Gβ is also continuous, thus on account of
the Belge fixed point theorem, there exits at least x1 ∈ K1 such that Gβ (x1) = x1.
Since (M1,g1) is a Hadamard manifold where the Moskovitz-Dines property holds,
an analogous argument as in Theorem 1 shows that Gβ (x1) = x1 is equivalent to
x1 ∈SSV . The proof is complete. 4

3.2 Non-compact case

When the strategy sets are non-compact, certain growth assumptions are needed on
the payoff functions in order to guarantee the existence of Stackelberg equilibria.
We first assume that for some x1 ∈ K1 one has

(Hh2
x1 ) There exists x2 ∈ K2 such that

Lx1,x2 = limsup
dg2 (x,x2)→∞, x∈K2

g2

(
∂h2
∂x2

(x1,x),exp−1
x (x2)

)
+g2

(
∂h2
∂x2

(x1,x2),exp−1
x2

(x)
)

dg2(x,x2)
<

<−
∥∥∥∥∂h2

∂x2
(x1,x2)

∥∥∥∥
g2

.

Theorem 3. Let (M1,g1) be a Riemannian manifold, and (M2,g2) be a Hadamard
manifold. Let h2 : M1×M2 → R be a function of class C1 and Ki ⊂ Mi closed,
geodesic convex sets, i = 1,2. Let x1 ∈ K1 and assume that hypothesis (Hh2

x1 ) holds
true. Then RSV (x1) 6= /0.

Proof. Let E0 ∈ R such that

Lx1,x2 <−E0 <−
∥∥∥∥∂h2

∂x2
(x1,x2)

∥∥∥∥
g2

.

On account of hypothesis(Hh2
x1 ) there exists R > 0 large enough such that for every

x ∈ K2 with dg2(x,x2)≥ R, we have

g2

(
∂h2

∂x2
(x1,x),exp−1

x (x2)

)
+g2

(
∂h2

∂x2
(x1,x2),exp−1

x2
(x)
)
≤−E0dg2(x,x2).

Clearly, one may assume that K2 ∩Bg2(x2,R) 6= /0. In particular, from (3) and (2),
for every x ∈ K2 with dg2(x,x2)≥ R, the above relation yields

g2

(
∂h2

∂x2
(x1,x),exp−1

x (x2)

)
≤ −E0dg2(x,x2)

+

∥∥∥∥∂h2

∂x2
(x1,x2)

∥∥∥∥
g2

‖exp−1
x2

(x)‖g2 (6)

=

(
−E0 +

∥∥∥∥∂h2

∂x2
(x1,x2)

∥∥∥∥
g2

)
dg2(x,x2)

< 0.
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Let KR = K2 ∩Bg2(x2,R). It is clear that KR is a geodesic convex, compact subset
of (M2,g2). Due to Theorem 2, we immediately have that there exists x̃2 ∈ KR such
that

g2

(
∂h2

∂x2
(x1, x̃2),exp−1

x̃2
(y)
)
≥ 0 for all y ∈ KR. (7)

Note that dg2(x̃2,x2) < R. By assuming the contrary, from (6) with x = x̃2 we have
that

g2

(
∂h2

∂x2
(x1, x̃2),exp−1

x̃2
(x2)

)
< 0,

by contradicting relation (7).

Let us choose z ∈ K2 arbitrarily. From the fact that dg2(x̃2,x2)< R, for ε > 0 small
enough, the element y = expx̃2

(ε exp−1
x̃2
(z)) belongs both to K2 ∩Bg2(x2,R) = KR.

By replacing y into (7), we obtain that

g2

(
∂h2

∂x2
(x1, x̃2),exp−1

x̃2
(z)
)
≥ 0.

Since z ∈ K2 is arbitrarily fixed, one has that x̃2 ∈RSV (x1), which ends the proof.
4

In the sequel, we are dealing with another class of functions. For a fixed x1 ∈ K1,
α > 0 and 0 < ρ < 1 we introduce the hypothesis:

(Hα,ρ
x1

) : dg2

(
expx

(
−α

∂h2

∂x2
(x1,x)

)
,expy

(
−α

∂h2

∂x2
(x1,y)

))
≤

≤ (1−ρ)dg2(x,y) for all x,y ∈ K2.

For fixed x1 ∈ K1 and α > 0, we consider the following two dynamical systems:

(a) let (DDS)x1 be the discrete differential system in the form{
yn+1 = F x1

α (PK2(yn)), n≥ 0,
y0 ∈M2;

(b) Let (CDS)x1 be the continuous differential system in the form{
dy
dt = exp−1

y(t)(F
x1
α (PK2(y(t)))),

y(0) = x2 ∈M2.

The main result of the present section is the following theorem.

Theorem 4 (Non-compact case). Let (M1,g1) be a Riemannian manifold, and (M2,g2)
be a Hadamard manifold. Let h2 : M1 ×M2 → R be a function of class C1 and
Ki ⊂Mi closed, geodesic convex sets, i = 1,2. Let x1 ∈ K1 and assume that hypoth-
esis (Hα,ρ

x1 ) holds true. Then RSV (x1) is a singleton and both dynamical systems,
(DDS)x1 and (CDS)x1 , exponentially converge to the unique element of RSV (x1).
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Proof. Since (M2,g2) is a Hadamard manifold, for the geodesic convex set K2 ⊂M2
we have that PK2 is non-expansive. Therefore, by (Hα,ρ

x1 ), one has for every x,y∈K2
that

dg2(F
x1
α (x),F x1

α (y))

= dg2

(
PK2

(
expx

(
−α

∂h2

∂x2
(x1,x)

))
,PK2

(
expy

(
−α

∂h2

∂x2
(x1,y)

)))
≤ dg2

(
expx

(
−α

∂h2

∂x2
(x1,x)

)
,expy

(
−α

∂h2

∂x2
(x1,y)

))
≤ (1−ρ)dg2(x,y).

Consequently, the function F x1
α is a (1−ρ)−contraction on K2.

(a) The system (DDS)x1 . We shall apply the Banach fixed point theorem to the
function F x1

α : K2→ K2, by guaranteeing the existence of the unique fixed point of
F x1

α for every x1 ∈ K1. Moreover, every iterated sequence in the dynamical system
(DDS)x1 converges exponentially to the unique fixed point x2 ∈ K2 of F x1

α . Due
to Theorem 1 the set RSV (x1) is a singleton with the element x2. Moreover, for all
k ∈ N we have that

dg2(yk,x2)≤
(1−ρ)k

ρ
dg2(y1,y0).

(b) The system (CDS)x1 . First of all, standard ODE theory shows that (CDS)x1 has
a (local) solution in [0,T ). We actually prove that T = +∞. To see this fact, we
assume that T <+∞, and we introduce the Lyapunov function which has the form

hx1(t) =
1
2

dg2(y(t),x2)
2.

Note that for a.e. t ∈ [0,T ), we have

d
dt

hx1(t) = −g2

(
exp−1

y(t)(x2),
dy
dt

)
= −g2

(
exp−1

y(t)(x2),exp−1
y(t)(F

x1
α (PK2(y(t))))

)
= −g2

(
exp−1

y(t)(x2),exp−1
y(t)(F

x1
α (PK2(y(t))))− exp−1

y(t)(x2)
)

−g2

(
exp−1

y(t)(x2),exp−1
y(t)(x2))

)
≤ ‖exp−1

y(t)(F
x1
α (PK2(y(t))))− exp−1

y(t)(x2)‖g2‖exp−1
y(t)(x2)‖g2

−‖exp−1
y(t)(x2)‖2

g2
.

By using the fact that (M2,g2) is a Hadamard manifold, a Rauch comparison theo-
rem and further straightforward estimates show that

‖exp−1
y(t)(F

x1
α (PK2(y(t))))− exp−1

y(t)(x2)‖g2 ≤ dg2(F
x1
α (PK2(y(t))),x2).
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Therefore, by (3) and the non-expansiveness of PK2 , we have

d
dt

hx1(t) ≤ dg2(F
x1
α (PK2(y(t))),x2)dg2(y(t),x2)−dg2(y(t),x2)

2

= dg2(F
x1
α (PK2(y(t))),F

x1
α (x2))dg2(y(t),x2)−dg2(y(t),x2)

2

≤ (1−ρ)dg2(PK2(y(t)),x2)dg2(y(t),x2)−dg2(y(t),x2)
2

≤ (1−ρ)dg2(y(t),x2)
2−dg2(y(t),x2)

2

= −ρdg2(y(t),x2)
2

= −2ρhx1(t), a.e. t ∈ [0,T ).

Therefore, one has

d
dt
[hx1(t)e

2ρt ] =

(
d
dt

hx1(t)+2ρhx1(t)
)

e2ρt ≤ 0.

In particular, the function t 7→ hx1(t)e
2ρt is non-increasing; therefore, for all t ∈

[0,T ) one has that hx1(t)e
2ρt ≤ hx1(0). Consequently, t 7→ y(t) can be extended

beyond T , contradicting our assumption. Therefore, T =+∞.

The above estimate gives that for every t ≥ 0, hx1(t)≤ hx1(0)e
−2ρt . In particular, it

yields that
dg2(y(t),x2)≤ dg2(y0,x2)e−ρt .

The proof is concluded. 4

Remark. Assume that Mi = Rmi , i = 1,2 and ∂ f2
∂x2

(x1, ·) is an λ−Lipschitz and
σ−strictly monotone function for some x1 ∈ K1, i.e.,

• ‖ ∂ f2
∂x2

(x1,x)− ∂ f2
∂x2

(x1,y)‖ ≤ λ‖x− y‖,

• 〈 ∂ f2
∂x2

(x1,x)− ∂ f2
∂x2

(x1,y),x− y〉 ≥ σ‖x− y‖2, ∀x,y ∈ Rm2 .

In this case, (Hε,ρ
x1 ) holds true with

0 < ε <
σ −

√
(σ2−λ 2)+
λ 2

and
ρ = 1−

√
1−2εσ + ε2λ 2 ∈ (0,1).

Remark. Very recently, Kristály and Repovs [6] proved that the Moskovitz-Dines
property on a generic Riemannian manifold implies the non-positiveness of the sec-
tional curvature. Consequently, in order to develop the aforementioned results on
’curved’ spaces, the non-positiveness of the sectional curvature seems to be a natural
requirement.

Remark. By following the non-smooth critical point theory of Szulkin [12], it would
be interesting to guarantee not only the existence of Stackelberg equilibrium points
but also some multiplicity results. Here, the indicator function of geodesic convex

– 78 –



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013

sets as well as the Fréchet subdifferential of the indicator function (as the normal
cone to the geodesic convex set) seem to play crucial roles which will be investigated
in a forthcoming paper.
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