
Acta Polytechnica Hungarica Vol. 10, No. 6, 2013 

 – 193 – 

Business Process Modeling and the Robust PNS 

Problem 

József Tick 

Óbuda University, Bécsi út 96/b, H-1034 Budapest, Hungary 

e-mail: tick@uni-obuda.hu 

Csanád Imreh, Zoltán Kovács 

University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary 

e-mail: cimreh@inf.u-szeged.hu; kovacsz@inf.u-szeged.hu 

Abstract: In this paper we define and investigate a new direction of the P-graph-based 

Business Process Modeling which we call the robust PNS problem. We consider the model 

where for each operating unit two costs are given, it has a nominal cost and an extended 

cost, and we know that at most b operating units have the extended cost, the others will 

have the nominal cost. We present a branch and bound based exact solution algorithm for 

the general problem, and a faster, polynomial time dynamic programming algorithm for 

the case of the hierarchycal problems. 
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1 Introduction 

In the last decades one of the most significant changes was that informatics spread 

in all the fields of business processes, and has become an unavoidable component. 

By now business processes have become more and more complex. Their regular 

operations need the smooth cooperation of several systems. The solution of the 

cost effective and error free management of complex business processes as well as 

the efficiency of the solution is one of the most important issues for the profit-

oriented sector, since the optimal efficiency of the complex business, production 

and office-automation processes is a high priority economic value. 

In favor of the optimal operation modeling the business processes is necessary; 

furthermore, the model-based approach is necessary for the development and 

management of such systems. 



J. Tick et al. Business Process Modeling and the Robust PNS Problem 

 – 194 – 

There are more well-known approaches for the modeling of business processes. 

Workflow is the most widespread modeling technique in the field of industrial and 

office information systems. The workflow-based models can be used excellently 

for the analysis, modeling and optimizing of work flows in the business processes. 

Several workflow representations have spread, out of which, however, the P-

graph-based workflow [17] is the one that is a process-based method with correct 

mathematical background and gives definitely an optimal workflow network 

structure on a systematic way. The introduction of the p-graph in workflows has 

been done similarly to the modeling of process networks [18], that is why the 

analysis of PNS methodologies and the elaboration of further procedures are 

necessary. 

In a manufacturing system, materials of different properties are changed by 

different transformation to yield desired products. Usually some raw materials and 

the desired products are given and our goal is to produce the desired products 

from the raw materials though the possible transformations. These sytems can be 

modelled in the P-graph framework where a bipartite graph is used. One of the 

sets of the vertices contains the possible materials. The other set contains the 

possible transformations represented as operating units defined by their input and 

output material sets. Some subgraphs of the graph containing all the possible 

transformations describe the feasible processes which produce the desired 

products from the raw materials and the goal is to find the cheapest such subgraph. 

In the combinatorial version studied in this paper each operating unit has a fixed 

cost and the cost of a subgraph is the sum of the costs of the operating units 

contained in it. In a more general, quantitive model we also consider the amounts 

of the used materials and the cost of the operating units depends on the amount of 

materials used by them. One can find the detailed backround of the PNS model in 

[6], [7], therefore we will recall only the main definitons in the next section. 

The P-graph framework was designed to analyse and solve process network 

synthesis problems but later it was observed that it can be used to solve 

optimization problems in other areas as well. In [5] and [15] one can find how to 

use the P-graphs in supply chain management. Another big area where the P-

graphs are useful is workflow management. 

The [18], [19] and [20] present the P-graph-based modeling of workflows 

introduced to the analogy of process-network modeling as well as introduce the 

extension of the model by the time factor as special resource. It generates the 

relevant mathematical model from the PNS structure of the defined workflow and 

conducts analyses in order to define the objective function (capacity constraints, 

bottle necks) determined by the environment. 

The [16] and [21] present the possible fuzzy extension of the P-graph-based 

workflow model, analyses the „real life like”, uncertain and not-exactly definable 

situations present in the real application environment of the workflow, which for 

better modeling makes the fuzzy extension necessary. It introduces the fuzzy sets 
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defined for documents and activities and presents the application of the method 

with an example. It introduces the parametric t-norm, which can be considered as 

the extension and generalization of the Zadeh and the Fodor t-norms indeed and 

with its application the tuning of the fuzzy regulatory systems might become more 

effective. 

In these optimizaton problems we suppose that all costs are known exactly in 

advance. On the other hand, in real applications usually some uncertainty can 

change the data. In the PNS model these uncertainties can be handled in the case 

of workflow problems by fuzzy methods (see [16] for details) or at the supply 

chain problems by extending the P-graph with the ROA (reliability of availability) 

value at the materials (see [15] for details). In general, for most optimization 

model the problem of uncertainty is solved by stochastic optimization. On the 

other hand, in these cases we need some a priori information about the distribution 

of the data, which is usually not available in real applications. Another approach is 

a robust optimization, where the uncertainty is handled by deterministic worst 

case scenario. In these models we do not have the fixed values of the parameters 

we only know that they are in a given interval. There are many robust models of 

combinatorial problems one can find an overview in [3]. In this paper we consider 

the robust version where we have an a priori bound on the number of the 

parameters which might be changed, such models are studied in [4] and [14]. This 

means that we consider the model where for each operating unit two costs are 

given, it has a nominal cost and an extended cost, and we know that at most b 

operating units have the extended cost, the others will have the nominal cost. We 

will search for the optimal solution for this objective functions. 

2 The Mathematical Backround 

2.1 The Basic Definitions of the PNS Model 

The structure of the PNS problem can be studied by the P-graphs defined in [7]. 

To define this graph let M be the finite nonempty set of the possible materials. 

The are two distinguished subsets of the materials, R denotes the set of raw 

materials, and P denotes the set of the desired products. The possible 

transformations are modeled as operating units, each of them is determined by two 

sets of materials, i.e., the set of input and output materials of the operating unit. 

For an operating unit u we denote the set of input materials by in(u), the set of 

output materials by out(u), we will use the same notation for the sets of operating 

units. We denote the set of all possible operating units by O. Then the process 

graph or P-graph in short is defined by this pair (M, O). The set of vertices of this 

directed graph is M U O, and the set of edges consist of the following subsets 
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1) the edges which go to an operating unit from its input materials 

2) the edges which go from an operating unit to its output materials. 

Then some subgraphs of the P-graph represent the feasible solutions which are 

able to produce the required materials from the set of raw materials. In [7] it is 

shown that a subgraph (m,o), where m and o are the subsets of M and O, 

represents a feasible solution if and only if it satisfies the properties listed below. 

(A1) P is a subset of m, 

(A2) a material from m is a raw material if and only if no edge goes into it in the 

P-graph (m, o), 

(A3) for every operating unit of o there exists a path in the P-graph (m,o) which 

goes from the unit into a desired product, 

(A4) all of the materials in m are either input or output materials of some 

operating units from set o. 

For an arbitrary material m we denote by Δ(m) the set of operating units which 

produce the material. We extend this notation to sets as well, Δ(S) denotes the set 

of operating units which produces some elements from set S. 

In the combinatorial optimization version of the standard PNS problem each 

operating unit o has a cost c(o) and the goal is to find the feasible solution where 

the total cost of the operating units contained in it is minimal. There are some 

branch and bound algorithms for the solution of this optimization problem see 

[10] and [11] for details. These branch and bound algorithms are based on the 

notion of decision mappings which are defined in [8]. We will use these decision 

mappings later, thus we recall this definition here. 

A decision mapping assigns to each material m a subset of Δ(m) denoted by δ(m) 

and this shows which operating units produce the material in the feasible solution 

considered. On the other hand, not an arbitrary set of decision mappings can 

belong to a solution. If an operating unit with output set containing a material X is 

selected to produce in a solution a material Y, then it must be also selected to 

produce X as well. These contradictions are eliminated in the consistent decision 

mappings where it is valid for any pair of materials X, Y that δ(X)∩Δ(Y) is a 

subset of δ(Y). The consistent decision mappings are important since each feasible 

solution can be described by these decision mappings of the materials. 

2.2 The Robust Version 

In the robust model each operating unit oi has an extended cost c(oi)+ e(oi). We 

will call c(oi) the nominal cost and e(oi) the extra cost of the operating units. For 

any set Q of operating units we will use c(Q) to denote the sum of the nominal 

costs in set Q. Furthermore, we have an a priori bound b, which means that b 
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operating units can have the extended cost and the others have the nominal cost. 

We are interested in the worst case, therefore, if we consider a feasible solution of 

the problem in the robust version its cost will be the sum of the nominal costs of 

the operating units plus the sum of the b largest extra costs. In the robust model 

we can have completely different optimal solutions than in the case of nominal 

costs, as the following example shows. 

Example 1. Suppose we have a problem where R1 is the raw material, P1 is the 

desired product and we have one further material denoted by X1. There are three 

operating units: U1 produces directly P1 from R1 and c(u1)=5 e(ui)=2, U2 produces 

X1 from R1 and c(u2)=2 e(u2)=2, U3 produces P1 from X1 and c(u3)=2 e(u3)=2. If 

we consider the standard problem then the optimal solution contains U2 and U3 

and the optimal cost is 4. If we consider the robust version with b=1, then the 

optimal solution still contains U2 and U3 and the optimal cost is 6. But if we 

consider the robust version with b=2, then the optimal solution contains U1 and 

and the optimal cost is 7. 

 

Figure 1 

The P-graph of example 1 
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3 The Branch and Bound Algorithm 

Several branch and bound-based algorithms were developed for the solution of the 

standard combinatorial PNS problem, one can find the details in [9] or in [11]. 

Here we present an extension which can be used for the the robust problem. We 

consider a tree where the leaves contain the feasible solutions of the problem. As 

it is mentioned in the previous section these solutions are identified by the 

decision mappings defined on the full set of materials. In the inner points of the 

tree we have partial solutions identified by decision mappings defined only on a 

subset of the materials. Since the set of the feasible solutions is the same for the 

standard and the robust problem our algorithm for the robust problem differs only 

in the bounding function, where we need an estiomation on the new cost function. 

The algorithm uses a bounding function B which is defined on all partially defined 

decision mapping. It gives a lower bound on the costs of the feasible solutions 

which are the extensions of the decision mapping. The simplest function contains 

the total nominal cost of the selected operating units plus the sum of the b greatest 

extra costs among them. Some more difficult bounding functions are presented in 

[9] and [11], it is an interesting further question to extend them into the robust 

model. 

Algorithm B and B 

Initialization: Let the root of the tree be the empty decision mapping, calculate its 

bounding function and let the list L of the actual nodes contain this root with this 

value. Moreover, let OPT=N where N is greater than the sum of the extended cost, 

and OPTG be the empty graph. Continue the procedure with the iteration part. 

Iteration Part (while L contains some elements): 

Step 1. Choose the element of L, which has the smallest bounding function value, 

denote it by δ. Consider a material Y where the decision mapping δ is not defined. 

Extend the decision mapping of δ with all the possible consistent value of Y, 

denote the possible extensions by δ 1,..., δ t. 

Step 2. If δ i belongs to a feasible solution for some i, and the cost of the solution is 

smaller than OPT, then change OPTG with δ i and OPT with the cost of δ i. 

Step 3. Delete δ from the list L and put all δ i  which satisfies B(δ i) ≥OPT into L. 

Solution: The decision mapping of an optimal solution is stored in OPTG and the 

optimal value is stored in OPT. 

We note that we might have a faster algorithm if we start with a solution given by 

some heuristic algorithms. There are some heuristic developed for the solution of 

the standard PNS problem (see [2]) and since the set of feasible solutions is the 

same for the standard and the robust problem they give a feasible solution for the 

robust problem as well. On the other hand, it would be interesting to modify these 

algorithms or design new heuristics for the solution of the robust PNS problem. 
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4 The Hierarchical Robust PNS Problems 

There is a polynomial time solvable class of the PNS problem, which was 

investigated in [1] and [12]. In this section we extend this algorithm to the more 

general robust PNS problem. First we recall the definitions. A PNS problem is 

called hierarchical if there exist such partition M0=R,...,Ml=P of M and partition 

O1,..., Ol of O that for each i, i=1,...,l Oi contains operating unit having input 

materials from Mi-1 and output materials from Mi. A hierarchycal PNS problem is 

called k-wide hierarchical if Mi│≤ k is valid for i=0,...,l and │Oi│≤ k is valid for 

i=1,....,l. Figure 2 shows a 3-wide hierarchical problem where M0={ R1, R2}, 

O1={U1, U2,U3}, M1={X1, X2,X3}, O2={U4, U5}, M2={R1}. 

 

Figure 2 

A 3-wide hierarchical P-graph 

The assumption that a PNS problem has hierarchical structure seems to be very 

strong. On the other hand such problems might appear in practical applications. 

One example is an economic process that works by scheduled order. Then the P-

graph contains no cycle and can form a hirarchical structure. 

We can solve the hierarchical robust PNS problems with the following algorithm. 

The basic idea is to define the function F(S,j) which is the cost of the optimal 

solution which can produce the set S with at most i operating units having 

extended costs. We calculate this value by dynamic programming for each j=0,...,b 

and for each subsets of the sets Mi. Then F(P,b) gives the cost of the optimal 

solution of the problem. We will use an other, set valued function denoted by 

G(S,j) which notes that in the optimal solution of F(S,j) which set of operating 
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units is used to directly produce S. Finally V(S,j) denotes the number of the 

operating units which have extended cost among the operating units of G(S,j) in 

this optimal solution. 

Algorithm HSolve 

Initialization Let N be a large number which is greater than the sum of the 

extended costs of the machines, we will use that number to observe the cases 

where the problem has no feasible solution. Moreover, let F(S,j)=0 for each subset 

S of R= M0  and for each j. 

The i-th iteration (i=1,...,l) of computing the optimal cost  Execute the following 

steps for each subset S of Mi and for each j=0,...,b. 

Step 1. Consider the subsets of Delta(S) (note that each of these sets is included in 

Oi) and for each such set Q examine that the union of the output materials includes 

S or not. Denote the sets where S is a subset of that union by Q1,..., Qt. If no such 

set exists then F(S,j)=N, V(S,j)=N, and G(S,j) is empty for each j. Otherwise go to 

step 2. 

Step2. For each Qr, r=1,...t let qr denote the number of the operating units in the set 

and E(Qr,p) the sum of the p largest extra costs in set Qr for each p=0,...,qr. Now 

calculate the following value for each r=1,....,t. 

Cr = max{ F(in(Qr),j-p) + C(Qr) +  E(Qr,p) │ p=0,..., min(j, qr) } 

Let the set with the minimal value be denoted by Q, the minimal value is by C, the 

value of p where the minimum is obtained by p*. If there are more minimal values 

choose the set with the smallest index. Then let  F(S,j)=C, G(S,j)=Q, N(S,j)=p*. 

Determination of the optimal structure If F(P,b)≥N, then the problem has no 

feasible solution. Otherwise let A=P, v=b and O* be empty, and perform the 

following step while A is not a subset of the raw materials. Let O*= O* U G(A,v) 

and let A=in(G(A,v)) and let v=v─V(A,j). 

The optimal solution is the P-graph (M*,O*), where  M*=in(O*) U out(O*). 

Theorem  If a PNS problem is hierarchical then algorithm Hsolve gives an 

optimal solution of the problem or it finds that the problem has no feasible 

solution. 

Proof: First we prove that if the algorithm gives a solution then the produced sets 

(M*,O*) yield a P-graph which is a feasible solution. Since in the determination 

phase we start to build O* with the set producing P, it follows immediately that P 

is a subset of in(O*) thus it is contained in M*. Therefore, property (A1) holds. 

In a hierarchical PNS problem there is no operating unit producing raw material, 

thus we get that in (M*,O*) there can be no edge going into a raw material. On the 

other hand, consider a material X from M*. Then it is an input or an output 
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material of some operating units of O*. If it is an output material then obviously 

there is an edge going into it in the solution. If it is an input material of some 

elements of O, then it becomes an element of A during the determination phase. If 

after that no further iteration comes then X is a raw meterial, otherwise we extend 

O* with some operating units producing X, thus there will be an edge leading into 

it in the P-graph (M*,O*). Therefore, we proved that (A2) is valid. 

To prove (A3) we have to show that for each operating unit there exists a path 

from it into a desired product. One can see this statement by induction on the 

iteration steps of the determination phase. At the beginning we choose such 

operating units which produce directly desired products. Later in each step we 

choose operating units which produce input materials of some operating units 

selected earlier. 

Property (A4) is obvious by the definition of M*. 

Therefore we can conclude that algorithm Hsolve returns a feasible solution. Now 

we prove that it finds the optimal one. First we show the following lemma. 

Lemma 2  F(S,j) gives the smallest cost which can be used to produce all 

materials from set S with j extended costs for each set S which is a subset of Mi for  

i=0,...,l  and for each j=0,....,b.. 

Proof of the lemma: We prove this statement by induction on i. For i=0 all 

elements in M0 are raw material, therefore, the P-graph which contains only S is a 

feasible solution with cost 0 for any j. Thus the statement is valid for i=0. Now 

suppose that i<l and Lemma 2 holds for all subsets of Mi. We will prove it for the 

subset of Mi+1. 

Consider now an arbitrary subset S of Mi+1, and a feasible solution producing S 

from the raw materials in the robust model with bound j. In this solution some 

operating units are selected from level Oi+1, denote the set of these operating units 

by U. Then the input materials of U from level Mi are also produced. If p operating 

units have extended cost from set U then in(U) has to be produced with minimal 

cost using j-p extended costs. On the induction assumption this can be done by the 

cost F(in(U),j-p). Therefore, the cost of producing S will be the maximum of the 

values F(in(U),j-p)+C(U)+E(U,p). On the other hand, this value was considered in 

the minimum which calculates F(S,j) thus we obtained that F(S,j) cannot be larger 

than the cost of producing S. On the other hand, the determination phase produces 

a solution with cost F(S,j) thus the lemma is valid for the subsets of Mi+1 as well. 

By this lemma we obtain the correctness of the algorithm easily. If F(P,j)<N, then 

the determination phase builds a solution with cost F(S,j), therefore by Lemma 2 it 

is optimal. If F(P,j)≥N, then we prove that no feasible solution exists by 

contradiction. Suppose, we have some feasible solutions. Consider the optimal 

solution, and denote its cost by OPT. Then OPT cannot be greater than the sum of 

the extended costs of all operating units, thus OPT<N. But by Lemma 2 we have 

F(P,b)=OPT and this gives a contradiction. 
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Theorem 3. The time complexity of algorithm HSolve is O(4
k
blk) which is linear if 

the parameters k and b are considered as constant. 

Proof. In the initialization part we assign the value of each subsets of R and for 

each j, thus it takes O(2
k
b) time. In each iteration we consider b times all subsets 

of Mi, therefore we perform Step 1,2 of the iteration phase all together at most 

O(2
k
bl) times. In Step 1 in the worst case we have to consider all subsets of Oi, 

thus we have at most 2
k
 sets and for each of them the maximum in Step 2 has to be 

determined which needs at most O(k) time. Therefore the total time needed to 

perform the iteration part is O(4
k
blk). Finally the determination phase needs time 

O(l). 

Remark: We must note that the running time of the algorithm is exponential in 

the width of the problem, therefore it is effective only for small k-s. 

Conclusions 

In this work we defined the robust extension of the combinatorial PNS model 

which can be used in the analysis of process network synthesis and workflow 

problems. We presented the first results in this area: an exponential time branch 

and bound based algorithm for the solution of the problem in the general case, and 

a faster polyniomial time algorithm for the solution of thin hierarhical problems. 

We think so that there are many further interesting questions to investigate. As far 

as the branch and bound algorithm is concerned it would be interesting to 

develope further versions using other bounding functions or other material 

selection rules, and to compare the efficiency of the different versions. Morever, it 

is also an interesting question how one can extend the heuristic algorithms 

presented for the standard PNS problem. 

On the other hand, we defined and studied only the combinatorial model in this 

paper, which can be used to analyse the structure of the networks. It is an 

interesting question how to extend this model to the quantitative PNS model 

where the cost of an operating unit is not a constant but depends on the amount of 

materials used and produced by it. Moreover, in modeling workflow problems it 

would be important to take into account the shifts, it is also an interesting question 

to extend the robust PNS model into this direction. Finally, we mention that there 

are some results on the PNS problem where some other objective besides the cost 

is also taken into account (see [13]) it would be an interesting question to extend 

the robust model to handle this situation as well. 
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