
Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 29 –

A Multicore Architecture Focused on

Accelerating Computer Vision Computations

Liberios Vokorokos *, Eva Chovancová *, Ján Radušovský*,

Martin Chovanec**

* Department of Computers and Informatics, Faculty of Electrical Engineering

and Informatics, Technical University of Košice

Letná 9, 04001 Košice, Slovak Republic

eva.chovancova@tuke.sk, liberios.vokorokos@tuke.sk, jan.radusovsky@tuke.sk

** Institute of Computer technology, Technical University of Košice, Letná 9,

04001 Košice, Slovak Republic; e-mail: martin.chovanec@tuke.sk

Abstract: This paper deals with accelerating computer vision computations using a

specialized multicore architecture. Computer vision is one of the fastest-evolving segments

of computer science. Even though computer vision uses time-consuming methods, the

processing can be accelerated using specialized multicore processor architectures. Single-

core processors are a legacy, since they have reached their physical limits. The way to go

is to use multicore architectures, which can be also used to accelerate computations in

specialized areas such as computer vision. This paper describes a specialized multicore

architecture that can be used to accelerate time-consuming calculations in the field of

computer vision. The architecture proposed in this paper belongs to the Harvard

architecture family.

Keywords: image; architecture; Harvard concept; Princeton concept; threshold; control

unit; processing unit

1 Introduction

Computing and information systems have become an integral part of everyday life

and also of research. In research, there is a demand for systems that provide more

power, due to the time-consuming calculations involved.

The computing power of single-core processors – which are mostly examples of

the Von Neumann architecture – may be increased by increasing the capacity of

the individual components of the computer; this goes hand in hand with increasing

the amount of available memory in the system. However, this method of gaining

more computing power brings with it an increase in the costs of the development

mailto:liberios.vokorokos@tuke.sk,%20jan.radusovsky@tuke.sk

L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations

 – 30 –

of the individual components. It also reveals certain physical limits. The method

of increasing the capacity of the individual components to obtain higher

performance has been superseded; new developments tend to target multicore

processors. Having multiple processors on a single chip brings the advantage of

sheer processing power; nothing is free though. With multicore architectures, one

may see different problems, such as power consumption and heat dissipation. The

architecture must be designed so that the heat is distributed and there are no hot

links. Distributed and shared on-chip caches must adhere to the rules of coherence

to ensure data accuracy.

The present work analyses the various multicore architectures, based on which is

designed a specialized multicore architecture for accelerating calculations in

computer vision. The present work was supported by the Slovak Research and

Development Agency under contract no. APVV-0008-10. This research is the

result of the implementation of the “Research Centre for efficient integration of

the renewable energy sources” project, ITMS: 26220220064, supported by the

Research & Development Operational Programme funded by the ERDF.

2 Architecture Concept

When designing a specialized architecture, the concept choice is important. The

basi concepts we have taken into account when designing our architecture were

the following:

• the Harvard concept; and

• the Princeton concept.

Figure 1

a) the Harvard architecture, b) the Princeton architecture

The Harvard concept (Figure 1a) is a computer architecture with a physically

separated storage space and signal path for instructions and data. This means that

it has a separate address space for both programs and data. Today, most processors

have implemented a separate signal path due to performance reasons. [2] [6] [12]

a)

CPU

CPU

Data memory

Instruction memory

Data & instruction memory
b)

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 31 –

In conjunction with a modified Harvard architecture, it is possible to support tasks

such as reading the program implementation directly from the disk as data and

then executing them. In the Harvard architecture, it is not necessary to share the

memory properties, because the timing, the technology implementation and the

structure of addressable memory may vary. In some systems, the instruction

memory is larger than the memory for data, because the address of the instruction

is wider than the address of data. One of the most notable examples of the

Princeton concept is the Von Neumann architecture, which is simpler than the

newer Harvard architecture. The Von Neumann architecture – in comparison with

the Harvard concept – has only one memory (Figure 1b), which is used to store

both data and instructions; this means that it contains a common set of data and

instruction addresses. [12] [13]

Consequently, it is necessary to ensure that the processor does not interpret data as

instructions, and vice versa. The CPU accesses the memory in the same way, both

in the case of instructions or data. It uses the same addresses, data and control

signals. This memory structure allows for the existence of self-modifying

programs.

The Von Neumann architecture is a system that can store the program into the

operating memory, and thus the instructions and data are stored in a RAM

memory. This RAM memory enables both reading and writing operations. In the

Von Neumann architecture, the CPU can read instructions or read/write data

from/to the memory. These operations cannot be performed simultaneously

because both the data and the instructions use the same memory. However, the

Harvard architecture can load instructions and data at the same time because both

are stored at their own memory. Therefore, the Harvard architecture is faster. [2]

[6]

3 Multicore Processors

High-performance processor architectures are mostly represented by multiple

processor cores on a single chip. These architectures have the potential to provide

a higher maximum throughput; they scale better and provide higher performance

than monolithic architectures. The current trend in technology development aims

at new types of processors which should meet the need for higher performance

without increasing power consumption and heat. [1] [3] [4]

Multi-core processor architectures allow us to achieve increased performance and

to reduce heat by the integration of two or more processor cores in a single

processor case. Today, processors sporting a large number of cores are being

produced. These processors have the most logical structure – a two-dimensional

grid; they apply control flow and data flow core architectures. Considering the

definition of the processor, we can describe the multi-core processor as an

L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations

 – 32 –

integrated circuit to which two or more processors (cores) connect. Such a design

enables improved performance, reduced energy consumption and more efficient,

simultaneous task processing. All of this has resulted in a development boom in

the field of multi-core processors because single-core processors have reached

their limits in terms of performance and speed. [1] [3] [4]

4 The Proposed Architecture

The proposed processor architecture is based on the analysis of multi-core

processors and computer vision. Due to the advances in the development of multi-

core processors and computer vision, i.e. the use of parallel algorithms, it is

advisable to use multi-core processors to accelerate computations in this field. The

use of specialized multi-core processors results in higher performance and faster

data processing due to the fact that the image is distributed to the individual cores.

It takes less time to process the same amount of data. [5] [7] [19]

4.1 Image Mapping

The proposed specialized processor allows for the use of several approaches when

mapping the image; these differ in the distribution of the digital image, but also in

the number of required cores. Figure 2 represents the way the digital image is

mapped to the individual processor cores. This approach may be applied if the size

of the digital image is 256×256 pixels, which is also the maximum size of the

processed image. This size is given by the maximum capacity of data memory,

which is large enough for testing purposes; nevertheless, it may be expanded in

the future. With this approach, we divide the image into equally large parts that

exactly correspond to the memory size of a single core. [5] [7]

Figure 2

Image mapping (256×256 pixels)

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 33 –

If the image is smaller than 256×256 pixels, there are two ways to split the

mapped image. The first – even – method uses all the processor cores, so all cores

are equally busy, but they do not use their entire memory. The second method to

use with a smaller picture is the uneven method. This method uses the entire

memory capacity, but it is not as effective as the previous one, because it requires

more time to process the same image than the even method.

Due to the memory capacity used for testing, the maximum input image size is

256×256 pixels, and since we have available 16 cores with a memory capacity of

256 points × 256 points × 3 bytes (RGB) × 4 banks = 786432 bytes. The image is

stored in separate memory banks; therefore, we can load 4 different images

simultaneously and process them sequentially. [5] [7]

4.2 Instruction Set

To execute various operations over the input images, we need a set of instructions

representing the operations in question. Each of these instructions has a defined

format (Figure 3), as follows:

Figure 3

Instruction format

The instruction set shown in the following table contains a list of instructions and

their parameters necessary for the execution of the instructions over the input data:

Table 1

Instruction set

 Operating code Operand A Operand B Information

RGB → GS 00001 -- -- --

Thresholding 00010 Upper

threshold

Lower

threshold

Object

boundaries

calculation

Half

thresholding

00011 Upper

threshold

Lower

threshold

Object

boundaries

calculation

Spectral

thresholding

00100 Upper

threshold

Lower

threshold

Object

boundaries

calculation

Half-spectral

thresholding

00101 Upper

threshold

Lower

threshold

Object

boundaries

calculation

Operating

code

4 bits

Source

bank

2 bits

Target

bank

2 bits

Operand

 A

2 bits

Operand

B

2 bits

L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations

 – 34 –

Writing to

register

00111 Upper

threshold

Lower

threshold

Object

boundaries

calculation

As is evident from Table 1, for the calculation of the various thresholding types,

one has to specify operands A and B, i.e. the upper and lower threshold. We can

define the object boundaries in a digital image using these thresholds and thus tell

these from the background.

5 The Covitor Processor

The proposed processor – Covitor – is a processor with 16 cores specialized in

digital image processing and using the instruction set described in the previous

section. This processor is an instance of the Harvard architecture; it has its own

data memory and its own instruction memory. Having two memories makes

access to data and instructions faster. The cores of the Covitor processor are

arranged as a 4×4 grid. The structural diagram of the Covitor processor appears in

Figure 4.

Figure 4

The structural diagram of the 16-core processor

The processor operates in two modes; the Pmod and Cmod instructions are used to

set the system into programming or computing mode. In programming mode, the

input values are read into the registers / into the memory and the system timing is

set. Then the system switches to computing mode, which will run calculations

based on the program – these are the instructions applied to the data.

The done signal marks the end of the data processing cycle, while the data are

located at specific address in memory. If done is set to one, the cycle is

terminated. The address is set to the subsequent address in the memory, and the

next cycle of calculations starts. The Covitor processor contains two components

listed below; their connections are defined by mapping:

• Cores;

• Decoders.

A
b

 (
1
:0

)

A
c

(3
:0

)

A
d

r
(1

1
:0

)

 D
at

a
(2

3
:0

)

 C
lr

C
lk

R
st

C
m

o
d

P
m

o
d

S
ig

w
rp

p

S
ig

r

S
ig

w

T

ag

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 35 –

A Core is a universal processor core, mapped to 16 cores; the Decoder

components are used to address the cores.

6 Processor Cores

The Covitor processor was designed as a multi-core processor with 16 cores. The

architecture is a member of the Harvard architecture family; it has a separate

memory for both instructions and data.

The instruction memory is located directly in the core. The data memory is larger

than the instruction memory and it sits in the processing unit. The scheme of a

core is presented in Figure 5.

Figure 5

A processor core

By having 16 cores in a processor we achieve higher performance, which we need

for faster image processing. This is expressed by the following formulae:

 d
n

m
td

n

m
t 

16
21 (1)

In these equations, m refers to the amount of pixels of a digital image, while n

refers to the number of cores used. It is also necessary to calculate with the time

needed for loading and distributing the data to each of the cores, which is

expressed by the value of d. Each core of the Covitor processor consists of a

memory, a register, a program counter, an adder, a control unit and a processing

unit.

Memory

Processing

unit

Register

Program counter

Adder

Control unit

L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations

 – 36 –

The processing unit includes an arithmetic logic unit. The digitized input image is

loaded into the memory, located in a processing unit, and the instructions are

loaded into the memory located in the core. The image processing is divided into

four phases, controlled by the control unit. In the first phase, the instruction is

loaded into the register. Then, in the second phase, a start signal is sent to the

processing unit. In the third phase, the image processing starts, based on the

particular instruction. The last, fourth phase is the stop signal itself, which

terminates the processing cycle.

6.1 The Control Unit

The control unit is a finite state machine with four states describing image

processing. The transitions between the states are performed by the control logic.

In this logic, the signals from the control unit and the required conditions to make

transitions are taken into account. The control unit controls the process by means

of the R(0), R(1), R(2) and R(3) signals, which initialize the transitions between

the various states of the finite state automaton. Figure 6 represents process control

implemented using the above signals.

Figure 6

Process control

For the program to function properly, we have to switch to computing mode. If the

program is in boot mode, the control unit will not start and image processing will

not take place.

6.2 The Processing Unit

The processing unit is a part of the processor core; its main task is to implement

the instructions processing the input data loaded in its internal memory. It also

contains a partial logic circuit, controlling the termination of image processing.

The implementation of the processing unit is based on the logic circuit presented

in Figure 7.

 R(0) R(1) R(2) R(3)

Load to

register

„START“

signal

Control

unit

„DONE“

signal

Loading

pixels

Processing

data

Result

evaluation

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 37 –

Figure 7

The processing unit

The processing unit is responsible for processing the image by thresholding or

converting it from RGB to grayscale. The processing is started by a starting

signal; this indicates the start of the process itself. The processing output is stored

in the R8 output register, both after thresholding and also after conversion to

greyscale.

We have created a set of rules to determine when and which results may be

entered in the R8 register to ensure the accuracy of the data stored in the register.

An important part of the processing unit is the addressing module; it determines

the appropriate memory address, which is used to read further data for processing

– as described lower in the text. A further important part of the processing unit is

the arithmetic-logic unit, with two logic sub-circuits. One of these converts the

digital image on the input from RGB format to grayscale. This RGB- grayscale

conversion is based on the following equation:

BGRgrayscale *11,0*59,0*3,0  (2)

The second logic circuit is responsible for processing the image by means of

various types of image thresholding operations. In our proposal, we use four

thresholding types:

• Simple thresholding;

• Half-thresholding;

• Spectral thresholding;

• Half-spectral thresholding.

Input

Input

Input
Adressing

module

Aritmethic-logic unit

RGB → Gray

RGB → Gray

R8 register

Memory

L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations

 – 38 –

During thresholding, the input data of the digital image are compared with the

upper and lower threshold values stored in the respective registers. Next, we

perform a comparison to decide whether the given image point belongs to the

subject or the background.

Figure 8

The addressing module

As mentioned above, the addressing module (Figure 8) is a significant part of the

processing unit. The operation of this module is two-fold: its first task is to

terminate the image processing when reaching the last address of the stored pixel

data, while the second is to set the pixel addresses.

The ADR register stores a value that refers to the address from which data are

taken for processing. If the input controlling R signal arrives, the adder increments

the value stored in the ADR register. The incremented value is compared by the

comparator with the value stored in the RPP register. If it is smaller or equal, the

data processing continues with the next address in the sequence and the cycle

repeats again.

7 Simulation

One way of speeding up image processing is to use multiple cores on a single

chip; the load is spread over multiple cores, and thus each core has to process a

smaller number of pixels.

In the simulation we have used different numbers of cores for image processing.

We have seen that an increased number of cores allows us to process more pixels

in the same period (Figure 9).

ADR register

RPP register

Adder Comparator

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 39 –

0

125

250

375

500

625

750

875

1000

0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b

e
r

o
f

p
ix

e
ls

Time t [SC]

1 core 4 cores 16 cores

Figure 9

Image processing performed on multiple cores

As is evident from the graph, when processing the same image with 16 cores of a

single chip, we need 16-times fewer machine cycles (SC) than we would need

using a single core. In this simulation we used a 256×256 pixel image, so the total

number of pixels processed was:

 65536256*256 pixels (3)

The time required for processing the image using a single core is given by the

following equation:

 4*256*256t (3)

 SCt 262144 (4)

When processing the image using the Covitor processor, the total load spreads to

16 cores, which reduces the processing time. In the simulation, we have spread the

load evenly due to a memory limitation (Figure 10 – the maximum amount of

memory that can be processed by each core is evident from this figure).

We have imposed the image size limitation due to testing difficulties, though in

the future it will be possible to expand the memory of the proposed processor to

store and retrieve information about the image, i.e. process higher resolution

images.

L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations

 – 40 –

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pixels

Number of cores

Figure 10

Even load distribution

Uneven load distribution may be used, too, on the condition that the processed

image has a smaller resolution (64×64 pixels) than the maximum memory

capacity (Figure 11).

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pixels

Number of cores

Figure 11

Load distribution with 64 × 64 pixel image resolution

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 41 –

When processing smaller resolution images, the load can be spread evenly or

unevenly, as presented in the graph (Figure 11). In even load distribution, all cores

are used, but only a part of their memory capacity. When applying uneven load

distribution we use the whole memory capacity, but only some cores. In terms of

efficiency, it is preferable to use even load distribution, because less time is

needed to process the image than with the uneven load distribution.

The simulations we have implemented have demonstrated the correct functionality

of the proposed architecture and the efficiency of image processing, too. We have

also witnessed the acceleration of image processing computations.

Using multiple cores for image processing allows faster computation in linear

proportion to the number of cores. This acceleration may be even 16-fold when

using even load distribution.

When simulating image processing using the Covitor processor, we have

witnessed that the acceleration depends on the load distribution type. Even load

distribution is more efficient than uneven load distribution.

Conclusion

In our work we have designed and implemented a specialized multicore

architecture focused on accelerating computer vision computations. The design of

this architecture was based on the analysis of multicore processors, which has

shown that the Harvard architecture is faster when accessing data and instructions

stored in memory.

The speedup of the proposed architecture depends on the type of load distribution

used; even load distribution is more effective than uneven distribution. The

proposed data (image) memory has its limitations, though this can be overcome in

future. This limitation is present due to testing reasons.

Moreover, the instruction set consists only of basic instructions that correspond to

the various thresholding types and to RGB-grayscale transformation. This

instruction set can be extended by instructions corresponding to image extraction

by connected components (4- and 8-neighbours). These methods use the

neighbour’s pixels to perform computations, so the data might overlap. Therefore

it is necessary to solve cache memory coherence problems. This specialized

architecture may also process interactive algorithms.

Acknowledgements

The present work was supported by the Slovak Research and Development

Agency under contract no. APVV-0008-10. The present research is the result of

the implementation of the “Research Centre for efficient integration of the

renewable energy sources” project, ITMS: 26220220064, supported by the

Research & Development Operational Programme funded by the ERDF.

L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations

 – 42 –

References

[1] G. Blake, R. Dreslinski, T. Mudge: „A Survey of Multicore Processors“,

Signal Processing Magazine, IEEE, pp. 26-37, 2009, 1053-5888/09

[2] M. Jelšina: „Architektonické riešenie počítačového systému data flow KPI“

[Data-flow computer system architecture] Košice, Slovakia: Elfa, 2004,

ISBN 80-89066-86-0

[3] B. De Ruijsscher, G. Gaydadjiev, J. Lichtenauer, E. Hendriks: „FPGA

Accelerator for Real-Time Skin Segmentation“ 2006, ISBN 0-7803-9783-5

[4] P. Gepner, M. Kowalik: „Multi-Core Processors: New Way to Achieve

High System Performance“, Proceedings of the International Symposium

on Parallel Computing in Electrical Engineering PARELEC'06, Computer

Society, 2006, ISBN: 0-7695-2554-7

[5] B. Chanda, D. Majumder: „Digital Image Processing and Analysis“, PHI

Learning Pvt, 384 pages, 2004, ISBN 8120316185

[6] L. Vokorokos, N. Ádám, J. Trelová: „Sequential Threads In Data Flow

Computers“, AEI '2010 : International Conference on Applied Electrical

Engineering and Informatics, Venezia, Italy, September 5-13, Košice,

Slovak Republic, 2010, pp. 54-58, ISBN 978-80-553-0519-6

[7] S. Klupsch, M. Ernst, S. Huss, M. Rumpf, R. Strzodka: „Real Time Image

Processing Based on Reconfigurable Hardware Acceleration“, www.mpi-

inf.mpg.de/~strzodka/papers/public/KlErHu_0 2fpga.pdf

[8] R. Kumar, V. Zyuban, D. Tullsen: „Interconnections in Multi-Core

Architectures“, Proceedings of the 32
nd

 International Symposium on

Computer Architecture (ISCA’05), 2005, ISBN 1063-6897/05

[9] J. Nurmi: „Processor Design: System-On-Chip Computing for ASICs and

FPGAs“, Springer, 2007, ISBN 978-1-4020-5530-0

[10] C. Rafael R. Woods: „Digital Image Processing“, Prentice Hall, 2008,

ISBN, http://lit.fe.uni-lj.si/showpdf.php?lang=slo&type=doc&doc=dip

&format=0, 0-13-168728-x

[11] V. Hlaváč: „Počítačové Vidění“ [Computer vision], Prague: Grada a.s., 252

pages, 1992, ISBN 8085424673

[12] L. Vokorokos: „Princípy architektúr počítačov riadených tokom údajov“

[Principles of data-flow computer architectures], Košice: Copycenter, spol.

s r.o., 2002, p. 147. ISBN 80-7099-824-5

[13] L. Vokorokos, B. Madoš, A., Baláž, N. Ádam: „Architecture of Multi-Core

Computer with Data-driven Computation Model“, Acta Electrotechnica et

Informatica, pp. 20-23, 2010, ISSN 1335-8243

[14] R. Young: „How Computers Work“,Que Publishing, 2009, 464 pages,

ISBN-10: 0789736136

http://www.mpi-inf.mpg.de/~strzodka/papers/public/KlErHu_0%202fpga.pdf
http://www.mpi-inf.mpg.de/~strzodka/papers/public/KlErHu_0%202fpga.pdf
http://lit.fe.uni-lj.si/showpdf.php?lang=slo&type=doc&doc=dip%20&format=0
http://lit.fe.uni-lj.si/showpdf.php?lang=slo&type=doc&doc=dip%20&format=0

Acta Polytechnica Hungarica Vol. 10, No. 5, 2013

 – 43 –

[15] A. C. Bovik: „The Essential Guide to Image Processing“, Academic Press,

880 p, 2009, ISBN: 9780123744579

[16] J. Dennis, G. Gao: „An Efficient Pipelined Dataflow Processor

Architecture“, Supercomputing '88 Proceedings of the 1988 ACM/IEEE

conference on Supercomputing, s. 368-373, IEEE Computer Society

Press Los Alamitos, ISBN:0-8186-0882-X

[17] M. Hill, M. Marty: „Amdahl’s Law in the multicore era“,EEE Computer

Society Press Los Alamitos,Journal Computer, Volume 41, Issue 7, July

2008, Pages 33-38

[18] T. Mattson, R. Wijngaart, M. Frumkin: „Programming the Intel 80-Core

Network-on-a-Chip Terascale Processor“, Conference on High

Performance Networking and Computing, Proceedings of the 2008

ACM/IEEE conference on Supercomputing, 2008, ISBN: 978-1-4244-

2835-9

[19] J. Parker: „Algorithms for Image Processing and Computer Vision“,

Indianapolis, Ind.: Wiley Publishing, Inc., 2011

[20] N. Ádám, B. Madoš, A. Baláž: „ P-Double Operators in the Pipeline

System of the DF-KPI Architecture“, INES 2012: IEEE 16
th

 International

Conference on Intelligent Engineering Systems: proceedings: June 13-15,

2012, Lisbon, Portugal. - Budapest: IEEE, 2012 P. 357-362. - ISBN 978-1-

4673-2692-6

