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Abstract: This paper deals with accelerating computer vision computations using a 

specialized multicore architecture. Computer vision is one of the fastest-evolving segments 

of computer science. Even though computer vision uses time-consuming methods, the 

processing can be accelerated using specialized multicore processor architectures. Single-

core processors are a legacy, since they have reached their physical limits. The way to go 

is to use multicore architectures, which can be also used to accelerate computations in 

specialized areas such as computer vision. This paper describes a specialized multicore 

architecture that can be used to accelerate time-consuming calculations in the field of 

computer vision. The architecture proposed in this paper belongs to the Harvard 

architecture family. 
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1 Introduction 

Computing and information systems have become an integral part of everyday life 

and also of research. In research, there is a demand for systems that provide more 

power, due to the time-consuming calculations involved. 

The computing power of single-core processors – which are mostly examples of 

the Von Neumann architecture – may be increased by increasing the capacity of 

the individual components of the computer; this goes hand in hand with increasing 

the amount of available memory in the system. However, this method of gaining 

more computing power brings with it an increase in the costs of the development 

mailto:liberios.vokorokos@tuke.sk,%20jan.radusovsky@tuke.sk


L. Vokorokos et al. A Multicore Architecture Focused on Accelerating Computer Vision Computations 

 – 30 – 

of the individual components. It also reveals certain physical limits. The method 

of increasing the capacity of the individual components to obtain higher 

performance has been superseded; new developments tend to target multicore 

processors. Having multiple processors on a single chip brings the advantage of 

sheer processing power; nothing is free though. With multicore architectures, one 

may see different problems, such as power consumption and heat dissipation. The 

architecture must be designed so that the heat is distributed and there are no hot 

links. Distributed and shared on-chip caches must adhere to the rules of coherence 

to ensure data accuracy. 

The present work analyses the various multicore architectures, based on which is 

designed a specialized multicore architecture for accelerating calculations in 

computer vision. The present work was supported by the Slovak Research and 

Development Agency under contract no. APVV-0008-10. This research is the 

result of the implementation of the “Research Centre for efficient integration of 

the renewable energy sources” project, ITMS: 26220220064, supported by the 

Research & Development Operational Programme funded by the ERDF. 

2 Architecture Concept 

When designing a specialized architecture, the concept choice is important. The 

basi concepts we have taken into account when designing our architecture were 

the following: 

• the Harvard concept; and 

• the Princeton concept. 

 

Figure 1 

a) the Harvard architecture, b) the Princeton architecture 

The Harvard concept (Figure 1a) is a computer architecture with a physically 

separated storage space and signal path for instructions and data. This means that 

it has a separate address space for both programs and data. Today, most processors 

have implemented a separate signal path due to performance reasons. [2] [6] [12] 
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In conjunction with a modified Harvard architecture, it is possible to support tasks 

such as reading the program implementation directly from the disk as data and 

then executing them. In the Harvard architecture, it is not necessary to share the 

memory properties, because the timing, the technology implementation and the 

structure of addressable memory may vary. In some systems, the instruction 

memory is larger than the memory for data, because the address of the instruction 

is wider than the address of data. One of the most notable examples of the 

Princeton concept is the Von Neumann architecture, which is simpler than the 

newer Harvard architecture. The Von Neumann architecture – in comparison with 

the Harvard concept – has only one memory (Figure 1b), which is used to store 

both data and instructions; this means that it contains a common set of data and 

instruction addresses. [12] [13] 

Consequently, it is necessary to ensure that the processor does not interpret data as 

instructions, and vice versa. The CPU accesses the memory in the same way, both 

in the case of instructions or data. It uses the same addresses, data and control 

signals. This memory structure allows for the existence of self-modifying 

programs. 

The Von Neumann architecture is a system that can store the program into the 

operating memory, and thus the instructions and data are stored in a RAM 

memory. This RAM memory enables both reading and writing operations. In the 

Von Neumann architecture, the CPU can read instructions or read/write data 

from/to the memory. These operations cannot be performed simultaneously 

because both the data and the instructions use the same memory. However, the 

Harvard architecture can load instructions and data at the same time because both 

are stored at their own memory. Therefore, the Harvard architecture is faster. [2] 

[6] 

3 Multicore Processors 

High-performance processor architectures are mostly represented by multiple 

processor cores on a single chip. These architectures have the potential to provide 

a higher maximum throughput; they scale better and provide higher performance 

than monolithic architectures. The current trend in technology development aims 

at new types of processors which should meet the need for higher performance 

without increasing power consumption and heat. [1] [3] [4] 

Multi-core processor architectures allow us to achieve increased performance and 

to reduce heat by the integration of two or more processor cores in a single 

processor case. Today, processors sporting a large number of cores are being 

produced. These processors have the most logical structure – a two-dimensional 

grid; they apply control flow and data flow core architectures. Considering the 

definition of the processor, we can describe the multi-core processor as an 
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integrated circuit to which two or more processors (cores) connect. Such a design 

enables improved performance, reduced energy consumption and more efficient, 

simultaneous task processing. All of this has resulted in a development boom in 

the field of multi-core processors because single-core processors have reached 

their limits in terms of performance and speed. [1] [3] [4] 

4 The Proposed Architecture 

The proposed processor architecture is based on the analysis of multi-core 

processors and computer vision. Due to the advances in the development of multi-

core processors and computer vision, i.e. the use of parallel algorithms, it is 

advisable to use multi-core processors to accelerate computations in this field. The 

use of specialized multi-core processors results in higher performance and faster 

data processing due to the fact that the image is distributed to the individual cores. 

It takes less time to process the same amount of data. [5] [7] [19] 

4.1 Image Mapping 

The proposed specialized processor allows for the use of several approaches when 

mapping the image; these differ in the distribution of the digital image, but also in 

the number of required cores. Figure 2 represents the way the digital image is 

mapped to the individual processor cores. This approach may be applied if the size 

of the digital image is 256×256 pixels, which is also the maximum size of the 

processed image. This size is given by the maximum capacity of data memory, 

which is large enough for testing purposes; nevertheless, it may be expanded in 

the future. With this approach, we divide the image into equally large parts that 

exactly correspond to the memory size of a single core. [5] [7] 

 

Figure 2 

Image mapping (256×256 pixels) 
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If the image is smaller than 256×256 pixels, there are two ways to split the 

mapped image. The first – even – method uses all the processor cores, so all cores 

are equally busy, but they do not use their entire memory. The second method to 

use with a smaller picture is the uneven method. This method uses the entire 

memory capacity, but it is not as effective as the previous one, because it requires 

more time to process the same image than the even method. 

Due to the memory capacity used for testing, the maximum input image size is 

256×256 pixels, and since we have available 16 cores with a memory capacity of 

256 points × 256 points × 3 bytes (RGB) × 4 banks = 786432 bytes. The image is 

stored in separate memory banks; therefore, we can load 4 different images 

simultaneously and process them sequentially. [5] [7] 

4.2 Instruction Set 

To execute various operations over the input images, we need a set of instructions 

representing the operations in question. Each of these instructions has a defined 

format (Figure 3), as follows: 

 

Figure 3 

Instruction format 

The instruction set shown in the following table contains a list of instructions and 

their parameters necessary for the execution of the instructions over the input data: 

Table 1 

Instruction set 

 Operating code Operand     A Operand     B Information 

RGB → GS 00001 -- -- -- 

Thresholding 00010 Upper 

threshold 

Lower 

threshold 

Object 

boundaries 

calculation 

Half 

thresholding 

00011 Upper 

threshold 

Lower 

threshold 

Object 

boundaries 

calculation 

Spectral 

thresholding 

00100 Upper 

threshold 

Lower 

threshold 

Object 

boundaries 

calculation 

Half-spectral 

thresholding 

00101 Upper 

threshold 

Lower 

threshold 

Object 

boundaries 

calculation 

Operating 

code 

4 bits 

Source 

bank 

2 bits 

Target 

bank 

2 bits 

 

Operand             

 A 

2 bits 

 

 

Operand             

B 

2 bits 
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Writing to 

register 

00111 Upper 

threshold 

Lower 

threshold 

Object 

boundaries 

calculation 

As is evident from Table 1, for the calculation of the various thresholding types, 

one has to specify operands A and B, i.e. the upper and lower threshold. We can 

define the object boundaries in a digital image using these thresholds and thus tell 

these from the background. 

5 The Covitor Processor 

The proposed processor – Covitor – is a processor with 16 cores specialized in 

digital image processing and using the instruction set described in the previous 

section. This processor is an instance of the Harvard architecture; it has its own 

data memory and its own instruction memory. Having two memories makes 

access to data and instructions faster. The cores of the Covitor processor are 

arranged as a 4×4 grid. The structural diagram of the Covitor processor appears in 

Figure 4. 

 

Figure 4 

The structural diagram of the 16-core processor 

The processor operates in two modes; the Pmod and Cmod instructions are used to 

set the system into programming or computing mode. In programming mode, the 

input values are read into the registers / into the memory and the system timing is 

set. Then the system switches to computing mode, which will run calculations 

based on the program – these are the instructions applied to the data. 

The done signal marks the end of the data processing cycle, while the data are 

located at specific address in memory. If done is set to one, the cycle is 

terminated. The address is set to the subsequent address in the memory, and the 

next cycle of calculations starts. The Covitor processor contains two components 

listed below; their connections are defined by mapping: 

• Cores; 

• Decoders. 
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A Core is a universal processor core, mapped to 16 cores; the Decoder 

components are used to address the cores. 

6 Processor Cores 

The Covitor processor was designed as a multi-core processor with 16 cores. The 

architecture is a member of the Harvard architecture family; it has a separate 

memory for both instructions and data. 

The instruction memory is located directly in the core. The data memory is larger 

than the instruction memory and it sits in the processing unit. The scheme of a 

core is presented in Figure 5. 

 

Figure 5 

A processor core 

By having 16 cores in a processor we achieve higher performance, which we need 

for faster image processing. This is expressed by the following formulae: 

                       d
n

m
td

n

m
t 

16
21         (1) 

In these equations, m refers to the amount of pixels of a digital image, while n 

refers to the number of cores used. It is also necessary to calculate with the time 

needed for loading and distributing the data to each of the cores, which is 

expressed by the value of d. Each core of the Covitor processor consists of a 

memory, a register, a program counter, an adder, a control unit and a processing 

unit. 
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The processing unit includes an arithmetic logic unit. The digitized input image is 

loaded into the memory, located in a processing unit, and the instructions are 

loaded into the memory located in the core. The image processing is divided into 

four phases, controlled by the control unit. In the first phase, the instruction is 

loaded into the register. Then, in the second phase, a start signal is sent to the 

processing unit. In the third phase, the image processing starts, based on the 

particular instruction. The last, fourth phase is the stop signal itself, which 

terminates the processing cycle. 

6.1 The Control Unit 

The control unit is a finite state machine with four states describing image 

processing. The transitions between the states are performed by the control logic. 

In this logic, the signals from the control unit and the required conditions to make 

transitions are taken into account. The control unit controls the process by means 

of the R(0), R(1), R(2) and R(3) signals, which initialize the transitions between 

the various states of the finite state automaton. Figure 6 represents process control 

implemented using the above signals. 

 

Figure 6 

Process control 

For the program to function properly, we have to switch to computing mode. If the 

program is in boot mode, the control unit will not start and image processing will 

not take place. 

6.2 The Processing Unit 

The processing unit is a part of the processor core; its main task is to implement 

the instructions processing the input data loaded in its internal memory. It also 

contains a partial logic circuit, controlling the termination of image processing. 

The implementation of the processing unit is based on the logic circuit presented 

in Figure 7. 
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Figure 7 

The processing unit 

The processing unit is responsible for processing the image by thresholding or 

converting it from RGB to grayscale. The processing is started by a starting 

signal; this indicates the start of the process itself. The processing output is stored 

in the R8 output register, both after thresholding and also after conversion to 

greyscale. 

We have created a set of rules to determine when and which results may be 

entered in the R8 register to ensure the accuracy of the data stored in the register. 

An important part of the processing unit is the addressing module; it determines 

the appropriate memory address, which is used to read further data for processing 

– as described lower in the text. A further important part of the processing unit is 

the arithmetic-logic unit, with two logic sub-circuits. One of these converts the 

digital image on the input from RGB format to grayscale. This RGB- grayscale 

conversion is based on the following equation: 

BGRgrayscale *11,0*59,0*3,0         (2) 

The second logic circuit is responsible for processing the image by means of 

various types of image thresholding operations. In our proposal, we use four 

thresholding types: 

• Simple thresholding; 

• Half-thresholding; 

• Spectral thresholding; 

• Half-spectral thresholding. 
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During thresholding, the input data of the digital image are compared with the 

upper and lower threshold values stored in the respective registers. Next, we 

perform a comparison to decide whether the given image point belongs to the 

subject or the background. 

 

Figure 8 

The addressing module 

As mentioned above, the addressing module (Figure 8) is a significant part of the 

processing unit. The operation of this module is two-fold: its first task is to 

terminate the image processing when reaching the last address of the stored pixel 

data, while the second is to set the pixel addresses. 

The ADR register stores a value that refers to the address from which data are 

taken for processing. If the input controlling R signal arrives, the adder increments 

the value stored in the ADR register. The incremented value is compared by the 

comparator with the value stored in the RPP register. If it is smaller or equal, the 

data processing continues with the next address in the sequence and the cycle 

repeats again. 

7 Simulation 

One way of speeding up image processing is to use multiple cores on a single 

chip; the load is spread over multiple cores, and thus each core has to process a 

smaller number of pixels. 

In the simulation we have used different numbers of cores for image processing. 

We have seen that an increased number of cores allows us to process more pixels 

in the same period (Figure 9). 
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Figure 9 

Image processing performed on multiple cores 

As is evident from the graph, when processing the same image with 16 cores of a 

single chip, we need 16-times fewer machine cycles (SC) than we would need 

using a single core. In this simulation we used a 256×256 pixel image, so the total 

number of pixels processed was: 

                                     65536256*256 pixels                           (3) 

The time required for processing the image using a single core is given by the 

following equation: 

      4*256*256t              (3) 

        SCt 262144      (4) 

When processing the image using the Covitor processor, the total load spreads to 

16 cores, which reduces the processing time. In the simulation, we have spread the 

load evenly due to a memory limitation (Figure 10 – the maximum amount of 

memory that can be processed by each core is evident from this figure). 

We have imposed the image size limitation due to testing difficulties, though in 

the future it will be possible to expand the memory of the proposed processor to 

store and retrieve information about the image, i.e. process higher resolution 

images. 
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Even load distribution 

Uneven load distribution may be used, too, on the condition that the processed 

image has a smaller resolution (64×64 pixels) than the maximum memory 

capacity (Figure 11). 
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Load distribution with 64 × 64 pixel image resolution 
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When processing smaller resolution images, the load can be spread evenly or 

unevenly, as presented in the graph (Figure 11). In even load distribution, all cores 

are used, but only a part of their memory capacity. When applying uneven load 

distribution we use the whole memory capacity, but only some cores. In terms of 

efficiency, it is preferable to use even load distribution, because less time is 

needed to process the image than with the uneven load distribution. 

The simulations we have implemented have demonstrated the correct functionality 

of the proposed architecture and the efficiency of image processing, too. We have 

also witnessed the acceleration of image processing computations. 

Using multiple cores for image processing allows faster computation in linear 

proportion to the number of cores. This acceleration may be even 16-fold when 

using even load distribution. 

When simulating image processing using the Covitor processor, we have 

witnessed that the acceleration depends on the load distribution type. Even load 

distribution is more efficient than uneven load distribution. 

Conclusion 

In our work we have designed and implemented a specialized multicore 

architecture focused on accelerating computer vision computations. The design of 

this architecture was based on the analysis of multicore processors, which has 

shown that the Harvard architecture is faster when accessing data and instructions 

stored in memory. 

The speedup of the proposed architecture depends on the type of load distribution 

used; even load distribution is more effective than uneven distribution. The 

proposed data (image) memory has its limitations, though this can be overcome in 

future. This limitation is present due to testing reasons. 

Moreover, the instruction set consists only of basic instructions that correspond to 

the various thresholding types and to RGB-grayscale transformation. This 

instruction set can be extended by instructions corresponding to image extraction 

by connected components (4- and 8-neighbours). These methods use the 

neighbour’s pixels to perform computations, so the data might overlap. Therefore 

it is necessary to solve cache memory coherence problems. This specialized 

architecture may also process interactive algorithms. 
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