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Abstract: This paper proposes a novel indirect model reference fuzzy control approach for 
nonlinear systems, expressed in the form of a Takagi Sugeno (TS) fuzzy model based on an 
optimal observer. In contrast to what is seen in the literature on adaptive observer-based 
TS fuzzy control systems, the proposed method is capable of tracking a reference signal 
rather than just regulation. Additionally the proposed algorithm benefits from an 
adaptation algorithm which estimates the parameters of observer optimally. The stability 
analysis of the adaptation law and the controller is done using an appropriate Lyapunov 
function. The proposed method is then simulated on the control of Chua's circuit and it is 
shown that it is capable of controlling this chaotic system with high performance. 
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1 Introduction 
Fuzzy controllers can be viable alternatives to classical controllers when there are 
experienced human operators who can provide qualitative control rules in terms of 
vague sentences. Although fuzzy controllers have been successfully used in many 
industrial applications, in cases when some adaptation is required, there may not 
be enough expert knowledge to tune the parameters of the controller. This has 
motivated the design of adaptive fuzzy controllers which can learn from data and 
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one of the early suggestions in this respect is the approach described in [1], named 
the linguistic self-organizing controller (SOC).Such early fuzzy adaptive systems 
have suffered from the lack of stability analysis, i.e. the stability of closed-loop 
system is not guaranteed and the learning process does not lead to well-defined 
dynamics [2]. In order to overcome this problem, the use of classical controllers 
have been suggested to complement adaptive fuzzy controllers. The fusion of 
fuzzy systems with classical control approaches makes it possible to benefit from 
the general function approximation property of fuzzy systems, as well as its power 
to use expert knowledge and the well established stability proof of classical 
control systems. For example in [3], [4] and [5], sliding mode fuzzy controllers 
are proposed, and in [6], [7] and [8], a H∞ -based fuzzy controller, a fuzzy-
identification-based back-stepping controller and a model reference controller 
with an adaptive parameter estimator based on Takagi Sugeno (TS) fuzzy models 
are proposed, respectively. 

Using a model system to generate the desired response is one of the most 
important adaptive control schemes [9] studied in such hybrid approaches, and to 
date, different fuzzy model reference approaches have been proposed. The indirect 
model reference fuzzy controllers described in [8], [10]-[13] and the direct model 
reference fuzzy controllers for TS fuzzy models described in [14], [15], and [16] 
can be cited as some examples. Most of the model reference fuzzy controller 
schemes existing in the literature assume that the full state measurement of the 
plant is available [8], [10]-[16]. However, in some practical applications state 
variables are not accessible for sensing devices or the sensor is expensive, and the 
state variables are just partially measurable. In such cases it is very essential to 
design an observer to estimate the states of the system. There has been a 
tremendous amount of activity on the design of nonlinear observers using fuzzy 
models, based on approaches like LMI [17]-[19], SPR Lyapunov function [20], 
[21] and adaptive methods [22]. 

The TS fuzzy system is one of the most popular fuzzy systems in model-based 
fuzzy control. A dynamical TS fuzzy system describes a highly nonlinear 
dynamical system in terms of locally linear TS fuzzy systems. The overall fuzzy 
system is achieved as a fuzzy blending of these locally linear systems [24]. Using 
this approach, it is possible to deal with locally linear dynamical systems rather 
than the original nonlinear dynamical system. When there are difficulties in the 
measurement of the states, the design of a fuzzy observer using the TS fuzzy 
model is considered in a number of different papers. In [22] an adaptive approach 
is proposed to design observer and controller for TS fuzzy system. However the 
proposed method considers only the regulation problem, tracking control is not 
addressed. 

In this paper, a novel indirect model reference fuzzy controller is described that 
uses a novel optimal fuzzy observer. The optimality of the fuzzy observer is 
achieved by finding the optimal solution of an appropriate cost function. The 
optimal adaptation law used in the design and its stability analysis are quite 
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similar to the optimal adaptation law proposed in [23] and its stability analysis 
given therein. The superiority of the proposed controller over the one described in 
[23] is that the current work uses an observer so that full state measurement is not 
necessary. The stability analysis of the proposed observer and the controller is 
done using a Lyapunov function. Not only can the proposed indirect model 
reference fuzzy controller regulate the states of the system under control but also it 
can make the system track a desired trajectory. This is another benefit of the 
current work over the observer based model fuzzy controllers available in the 
literature, such as that described in [22]. To demonstrate the efficacy of the 
proposed method, it is then used to control a chaotic system. It is shown that by 
the use of the proposed approach, it is possible to make the chaotic system follow 
the reference model. 

This paper is organized as follows. In Section 2 a brief study of zero-th order TS 
fuzzy systems is given. The structure of the proposed observer and its optimal 
adaptation law are introduced in Section 3, continuing by the stability analysis of 
the observer using a proper Lyapunov function. In Section 4 the proposed optimal 
observer is used in the design of the model reference fuzzy controller. Simulation 
results are presented in Section 5. Finally concluding marks are discussed in the 
next section. 

2 Takagi-Sugeno Fuzzy Systems 

In 1985 Takagi and Sugeno [25] proposed a new type of fuzzy systemin which the 
i-th rule of the fuzzy system is as follows: 

1 1 2 2 1 2: ... ( , ,..., )i
i i n in i nR If x is A and x is A and x is A Then y F x x x=  (1) 

In this fuzzy system 1 2, ,..., nx x x  are the inputs of the fuzzy system and (.)iF  is a 
function of inputs. This system can be seen as an extension of singleton fuzzy 
systems. It is to be noted that only the premise part of a TS fuzzy system is 
linguistically interpretable and that (.)iF  are not fuzzy sets. The functions (.)iF  
can be chosen in different ways. If the functions are chosen as constants ( iθ ), a 
singleton fuzzy system is recovered. This case is generally called a zero-th order 
TS fuzzy system, since a constant can be seen as a zero-th order Taylor expansion 
of a function. Another well-known possible selection of (.)iF  is to select the rule 
consequent as a linear function of the inputs. The resulting fuzzy system is called 
first order TS fuzzy system. 

The output of a TS fuzzy system can be calculated by 

1

m
i ii

y h F
=

= ∑  (2) 
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In which ( ih ) is the normalized firing of the i-th rule and ( m ) is the number of the 
rules. In this paper we use zero-th order TS fuzzy system. The output of the zero-
th order fuzzy system is calculated as: 

1

m
i ii

y hθ
=

= ∑  (3) 

3 The Structure of the Optimal Observer and its 
Stability Analysis 

In this section, an optimal indirect adaptive fuzzy observer for a nonlinear system 
is proposed. The adaptation law for the estimation of the parameters of the 
nonlinear system is derived. Using an appropriate Lyapunov function, the stability 
of the proposed observer and the adaptation laws are analyzed. 

3.1 The Structure of the Proposed Observer 

Let the dynamical equation of the system be in the following form: 

[ ( )]x Ax B u f y
y Cx
= + +
=

 (4) 

In which nx∈  is the n-dimentional state vector, n nA ×∈  is the known state 
matrix, 1nB ×∈  is the known input matrix, 1 nC ×∈  is the known output matrix, 
u∈  is the input signal and ( )f y  is an unknown Lipschitz function of y . The 
structure of the proposed observer is: 

1
ˆ ˆ [ ( )]m

i ii
x Ax B u h y LCeθ

=
= + + +∑  (5) 

in which ˆ nx∈  is the estimated value of x , 1nL ×∈  is the observation gain and 

1
( )m

i ii
h yθ

=∑  is the output of the fuzzy system with m  being the number of rules 

used to estimate ( )f y . The normalized firing strength of the i-th rule of this fuzzy 
system is ( )ih y , the parameters of the consequent part are iθ  and 

ˆe x x= −  (6) 

is the observation error. 

3.2 The Dynamics of the Observation Error 

We have: 
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1
( ) [ ( ) ( )]m

i ii
e A LC e B h y f yθ

=
= + + −∑  (7) 

It is supposed that the there exist optimal parameters *
iθ  for the fuzzy system such 

that: 

*
1

( ) ( ) ( )m
i ii

f y h y yθ ε
=

= +∑  (8) 

in which ( )yε  is the approximation error. It can be proved [23] that if ( )f y  is a 
Lipschitz function and the control signal u  is bounded the time derivative of 

( )f y  is also bounded and we have: 

( )sup | | f
t

df y
dt

σ<  (9) 

In which fσ  is a positive constant. It is assumed that the time derivative of the 
approximation error ε  is bounded so that: 

( )*
1

( ) ( )sup | ( ) | sup

m
i ii

t t

d h y df yy
dt dt ε

θ
ε σ=

= − <
∑

 (10) 

where εσ  is apositive constant. It follows that: 

( )
sup i

t

dh y
dt

η≤  (11) 

in which η  is a positive constant. The observation error dynamics can be 
expressed as follows. 

1
( ) ( ) ( )m

i ii
e A LC e B h y yθ ε

=
⎡ ⎤= + + −⎣ ⎦∑  (12) 

In above *
i i iθ θ θ= − . Since the fuzzy systems are proved to be general function 

approximators, by considering enough number of the rules for the fuzzy system, 
we have: 

sup | |
t

εσ ε=  (13) 

It is also assumed that there exists positive definite matrices P  and Q  such that: 

( ) ( )T

T

A LC P P A LC Q
PB C

+ + + = −

=
 (14) 
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3.3 The Optimal Adaptation Law for the Observer 

In order to design an optimal adaptation law for the observer, the following cost 
function is defined for the observer. 

0

1 ( ) ( )
2

ft TJ e Q e dt= − Δ −Δ∫  (15) 

in which ( )fe tΔ =  and ft  is the final time. In addition, n nQ ×∈  is a user 
defined positive definite matrix. This cost function is quite similar to the cost 
function used in [23]. The difference is that the cost function defined in [23] 
includes the tracking error while the cost function introduced here includes the 
observation error. This is an optimal observer design problem and its solution can 
be obtained by Pontryangin’s maximum principle. To solve this optimal problem a 
Hamiltonian is defined as: 

( ) ( )1 1

1, ( ) ( ) ( )
2

m mT T
i i i ii i

H e h e Q e p A LC e B h B εθ θ σ
= =

= − Δ − Δ + + + +∑ ∑  (16) 

in which p  is an adjoint variable, the adjoint equation is given by: 

( ) ( )T T
ep H Q e A LC p= −∇ = − − Δ − +  (17) 

The adaptation law for iθ  can be obtained by gradient method as: 

i i

T
i i i i ihh H h p Bθθ γ γ= − ∇ = −  (18) 

in which 0iγ >  is the learning rate. The transversality condition requires that 
[26]: 

( ) 0fp t =  (19) 

By letting 
1

( )m
i ii

p Pe S h yθ
=

= + ∑  and considering (17) we have: 

( )( )
( ) ( )

1 1

1

1
( ) ( )

m m
i i i ii i

m
i ii mT

i ii

Pe P A LC e B h B S h

d h
S Q e A LC Pe S h

dt

εθ σ θ

θ
θ

= =

=

=

+ + + + +

+ ≥ − −Δ − + +

∑ ∑

∑
∑

 (20) 

This is called sweeping method [26], [27]. In addition, assuming that the 
adaptation law is stable (the stability analysis will be considered in the next 
section) we have: 
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( ) ( )1 1

1 1

2
1 1

( )sup sup ( )

sup

sup sup

m m
i i i ii i

t t

m m
i i i i fi i

t

m mT
i i i i fi i

t

d h d h df yy
dt dt dt

h h

B p h h

ε

ε

θ θ
ε

θ θ σ σ

γ θ σ σ

= =

= =

= =

= + +

≤ + + +

≤ − + + +

∑ ∑

∑ ∑

∑ ∑

 (21) 

The first term of the right hand of (21) is bounded bacause p  must be a stable 
solution to the optimal control problem and ih  is bounded because it is the firing 
strength of the fuzzy system. The second term must be bounded if the adaptation 
law of θ  is stable and ih  is also bounded. Therefore we have: 

( )1sup

m
i ii

t
t

d h

dt

θ
σ=

<
∑

 (22) 

From (20) it follows that: 

( )1 * 1
1

m
m i ii

i ii

d h
Q PB h S

dt
θ

ε θ− =
=

⎡ ⎤
⎢ ⎥Δ = − +
⎢ ⎥⎣ ⎦

∑∑  (23) 

and also: 

( ) ( ) 0
( ) 0

T

T

P P A LC A LC P Q
S PB A LC S
+ + + + + =

+ + + =
 (24) 

subject to: 

( ) 0fP t =  and ( ) 0fS t =  (25) 

Considering the infinite horizon optimal control ft →∞ , P  and S  are in their 

steady state value ( 0, 0P S= = ) we have: 

( ) ( )
( )

T

T

P A LC A LC P Q
S A LC PB−

+ + + = −

= − +
 (26) 

Furthermore: 

1
( ) mT

i ii
p Pe A LC PB hθ−

=
= − + ∑  (27) 

By substituting (27) in (18) it follows that: 
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( )1
1

( )mT T
i i i i ii

h e P h B P A LC Bθ γ ϑ θ −
=

= − − +∑  (28) 

Considering (14) we obtain: 

1
1

( )m T
i i i y i i i ii

h e h h B P A LC Bθ γ γ ϑ θ −
=

= − + +∑  (29) 

In which ˆ( )ye C x x= −  and 0ϑ >  is a design parameter. 

3.4 Stability Analysis of the Proposed Observer 

In order to analyze the stability of the proposed observer the following Lyapunov 
function is introduced. 

2
1

1mT
ii

i

V e Pe θ
γ=

= +∑  (30) 

In which P  is the solution of (14). The time derivative of the Lyapunov function 
is obtained as: 

1

2mT T
i ii

i

V e Pe e Pe θ θ
γ=

= + +∑  (31) 

Considering (12) and (29) we have: 

( )
1

1
1 1

( ) ( ) 2 ( )

2 | | 2 ( )

mT T T
i ii

m mT T
y i i i ii i

V e A LC Pe e P A LC e e PB h y

e h e P h B P A LC Bε

θ

σ θ ϑ θ

=

−
= =

≤ + + + +

+ + − +

∑
∑ ∑

 (32) 

1( )P A LC −+  can be decomposed into a symmetric part ( M ) and anti-symmetric 
part ( N ) such that [23]: 

( )1 11 1( ) ( ) ( ) ( ) 0
2 2

T TM P A LC A LC P A LC Q A LC− − − −= + + + = − + + <  (33) 

( )11 ( ) ( )
2

TN P A LC A LC P− −= + − +  (34) 

Using the property of anti-symmetric matrix ( N ) we have: 

0TB NB =  (35) 

So that: 
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1

1
1 1

2 ( ) 2 | |

2 ( ) ( )

mT T
i i yi

m mT T T
i i i ii i

V e Qe e PB h y e

h e PB h B A LC Q A LC B

εθ σ

θ ϑ θ

=

− −
= =

⎡ ⎤≤ − + +⎣ ⎦

+ − + +

∑
∑ ∑

 (36) 

furthermore: 

*
1

1
1

2 ( ) 2 | |

( ) ( )

mT T
i i yi

m T T
i ii

V e Qe e PB h y e

h B A LC Q A LC B

εθ σ

ϑ θ
=

− −
=

≤ − + +

− + +

∑
∑

 (37) 

and 
2 *

min max 1

2
1

min 1

( ) 2 ( ) ( )

( ) ( )

m
i ii

m
i ii

V Q e P B e h y

Q A LC B h

ελ λ θ σ

ϑλ θ

=

−
=

⎡ ⎤≤ − + +⎣ ⎦

− +

∑

∑
 (38) 

In which min ( )Qλ  is the smallest eigenvalue of ( Q ). It follows that in order to 
have 0V ≤  we should have: 

2 *
min max 1

( ) 2 ( ) ( ) 0m
i ii

Q e P B e h y ελ λ θ σ
=

⎡ ⎤− + + ≤⎣ ⎦∑  (39) 

This equally means that: 

*
max 1

min

2 ( ) ( )

( )

m
i ii

P B h y
e

Q
ελ θ σ

λ
=

⎡ ⎤+⎣ ⎦ ≤
∑

 (40) 

Thus V  decreases inside a compact set S  where: 

*
max 1

min

2 ( ) ( )
|

( )

m
i iin

P B h y
S e e

Q
ελ θ σ

λ
=

⎧ ⎫⎡ ⎤+⎪ ⎪⎣ ⎦= ∈ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

∑
 (41) 

The following theorem summarizes the forthgoing optimal adaptation law and its 
stability analysis. 

Theorem 1. If there exists a positive definite matrix P  satisfying (14), the 
observer given by (5) for the nonlinear dynamical system of (4) with the 
adaptation law of (29) which is the optimal solution of the cost function (15) 
ensures that the state estimation error and the estimated values of the fuzzy system 

iθ  are uniformly bounded. Furthermore, the estimation error can be made to 
approach an arbitrarily small value by choosing appropriate values for the design 
constants max min( ), ( )P Qλ λ  and sufficient number of rules for the fuzzy system. 
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4 The Design of Indirect Model Reference Fuzzy 
Controller Based on Proposed Observer and its 
Stability Analysis 

In the previous section, the stability of the observer is considered using an 
appropriate Lyapunov function. In this section the stability of the control system is 
analyzed and a stable control signal is derived. The goal of the model reference 
fuzzy controller is to derive the system such that it follows the model reference 
system in the form of: 

, T
m m m r m mx A x B r A A LC Ba= + = + +  (42) 

in which n
mx ∈  is the n-dimentional state vector of the reference system, 

n n
mA ×∈  is the state matrix of the reference system, 1n

rB ×∈  is the input 
matrix, 1n

ma ×∈  is a user defined matrix which determines the dynamics of the 
reference model. The Lyapunov function is considered as: 

2
1 1 1

1ˆ ˆ mT T
m m ii

i

V e Pe e Pe θ
γ=

= + +∑  (43) 

In which 1P  is the solution of: 

1 1 1

1

( ) ( )T T T
m m

T

A LC Ba P P A LC Ba Q

P B C

+ + + + + = −

=
 (44) 

and 1Q  is a positive definite matrix. In addition, ˆme  is the observed tracking error 
defined as ˆ ˆm me x x= − . The Lyapunov function now includes both the observation 
error and the observed tracking error and it is possible to use it to analyze stability 
of the tracking error too. Considering (30) we have: 

1 1ˆ ˆT
m mV e Pe V= +  (45) 

The time derivative of the Lyapunov function is obtained as: 

1 1 1ˆ ˆ ˆ ˆT T
m m m mV e Pe e Pe V= + +  (46) 

since 

1
ˆ ˆ [ ( )]m

i ii
x Ax B u h y LCeθ

=
= + + +∑  (47) 

By subtracting (42) from (47) we have: 

1
ˆ ˆ ˆ ˆ ˆ[ ( ) ]m T T T

m m i i m m m m r mi
e Ae B u h y a x a x a x b r LCe LCxθ

=
= + + − + − − + −∑  (48) 
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In which ˆ ˆm me x x= −  and: 

1
ˆ ˆ ˆ[ ( ) ]m T

m m m i i m ri
e A e B u h y a x b r LCxθ

=
= + + − − −∑  (49) 

furthermore: 

( )1 1 1

1 11

ˆ ˆ

ˆ ˆ ˆ2 [ ( ) ] 2

T T
m m m m

mT T T
m i i m r mi

V e P A A P e

e PB u h y a x b r e P LCx Vθ
=

= +

+ + − − − +∑
 (50) 

Since for any 0α ≥  we have: 

2 2
1 1

1ˆ ˆ2 ( )T T
m me PBLCx e PBL yα

α
≤ +  (51) 

We obtain the following. 

2 2
1 1 1 11

1ˆ ˆ ˆ ˆ ˆ2 [ ( ) ] ( )mT T T T
m m m i i m r mi

V e Q e e PB u h y a x b r e PL y Vθ α
α=

≤ − + + − − + + +∑  (52) 

Considering the indirect model reference fuzzy control signal as: 

2
21

ˆ
ˆ ( )

ˆ
m myT

m i i ri
my

e
u a x h y y b r

e
θ ρ

δ=
= − − +

+∑  (53) 

in which 0ρ >  is a design parameter and r rB b B= . One gets: 

2 2 2
1 1 1 12

ˆ 1ˆ ˆ ˆ ˆ2 ( )
ˆ

myT T T
m m m m

my

e
V e Q e e P B y e PL y V

e
ρ α

αδ
≤ − − + + +

+
 (54) 

And further: 

( ) ( )
2 2 2 2

1 1 1 2 2

1 2ˆ ˆ ˆ ˆ( )
ˆ ˆ

T T
m m m my

my my

V e Q e e P L e y y V
e e

ρα δα
α δ α δ

−
≤ − + + + +

+ +
 (55) 

Taking: 
10.5ρ α− ≤  (56) 

and: 

1 1 min 12 ( )T TL P P L Qα λ≤  (57) 

One obtains: 

( )
2 2

1 min 1 2

1 ˆ( )
2 ˆm

my

V Q e y V
e
δλ

α δ
≤ − + +

+
 (58) 

and: 
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( ) ( ) ( )
2 2 2 2

1 min 1 2 2 2

1 2 2 2ˆ ˆ( )
2 ˆ ˆ ˆm m y my

my my my

V Q e y e e V
e e e
δ δ δλ

α δ α δ α δ
≤ − + + + +

+ + +
 (59) 

Considering (38) one obtains: 

( ) ( ) ( )
2 2 2 2

1 min 1 2 2 2

2 *
min max 1

2
1

min 1

1 2 2 2ˆ ˆ( )
2 ˆ ˆ ˆ

( ) 2 ( ) ( )

( ) ( )

m m y my
my my my

m
i ii

m
i ii

V Q e y e e
e e e

Q e P B e h y

Q A LC B h

ε

δ δ δλ
α δ α δ α δ

λ λ θ σ

ϑλ θ

=

−
=

≤ − + + +
+ + +

⎡ ⎤− + +⎣ ⎦

− +

∑

∑

 (60) 

Since: 

( )2

2 2
ˆmye
δ

αα δ
≤

+
 (61) 

We have: 

2 2 2 2
1 min 1

2 *
min max 1

2
1

min 1

1 2 2 2ˆ ˆ( )
2

( ) 2 ( ) ( )

( ) ( )

m m y my

m
i ii

m
i ii

V Q e y e e

Q e P B e h y

Q A LC B h

ε

λ
α α α

λ λ θ σ

ϑλ θ

=

−
=

≤ − + + +

⎡ ⎤− + +⎣ ⎦

− +

∑

∑

 (62) 

By taking α  as: 

min 1 min

8 4max ,
( ) ( )

T TC C C C
Q Q

α
λ λ

⎧ ⎫
<⎨ ⎬

⎩ ⎭
 (63)

 

One obtains: 

2 2
1 min 1

2 *
min max 1

2
1

min 1

1 2ˆ( )
4

1 ( ) 2 ( ) ( )
2

( ) ( )

m m

m
i ii

m
i ii

V Q e y

Q e P B e h y

Q A LC B h

ε

λ
α

λ λ θ σ

ϑλ θ

=

−
=

≤ − +

⎡ ⎤− + +⎣ ⎦

− +

∑

∑

 (64) 

If 

*
max 1

min

2 ( ) ( )

( )

m
i ii

P B h y
e

Q
ελ θ σ

λ
=

⎡ ⎤+⎣ ⎦ ≤
∑

 (65) 

and 
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22
min 1 ˆ( )

8m my Q eα λ≤  (66) 

We have 1 0V ≤  thus 1( )V t  decreases inside a compact set 1S  where: 

*
max 122

1 min 1
min

2 ( ) ( )
ˆ ˆ, ( ) and

8 ( )

m
i ii

m m m

P B h y
S e e y Q e e

Q
ελ θ σα λ

λ
=

⎧ ⎫⎡ ⎤+⎪ ⎪⎣ ⎦= ≤ ≤⎨ ⎬
⎪ ⎪
⎩ ⎭

∑
(67) 

It follows that it is possible to make the observed tracking error ( ˆme ) and the state 
estimation error ( e ) to approach an arbitrarily small value by choosing 
appropriate values for the design constants max min max 1, ( ), ( ), ( )P Q Pα λ λ λ  min 1( )Qλ  
and sufficient number of rules for the fuzzy system. But the main concern is to 
make the tracking error ( m me x x= − ) to approach any small value. Since 

ˆm me e e= −  and considering the fact that ˆme  and e  can be made arbitrarily small 
it follows that it is possible to make me  as small as desired. The following theorem 
summarizes the forthgoing stability analysis. 

Theorem 2. If there exists positive definite matrixes P  and 1P  satisfying (14) and 
(45), the control signal given by (53) together with the observer given by (5) for 
the nonlinear dynamical system of (4) with the adaptation law of (29) which is the 
optimal solution of the cost function (15) ensures that the nonlinear dynamical 
system of (4) follows the reference model of (42) with bounded error. In addition, 
the state estimation error and the estimated values of the fuzzy system iθ  are 
uniformly bounded. Furthermore, the tracking error and the state estimation error 
can be made to approach an arbitrarily small value by choosing appropriate values 
for the design constants max min max 1, ( ), ( ), ( )P Q Pα λ λ λ  min 1( )Qλ  and sufficient 
number of rules for the fuzzy system. 

5 Simulation Results 

In this section we use the well-known chaotic system of Chua's circuit to depict 
the design procedure and verify the effectiveness of the proposed algorithm. The 
control of the nonlinear chaotic Chua's circuits is an important topic for numerous 
practical applications since this circuit exhibits a wide variety of nonlinear 
dynamic phenomena such as bifurcations and chaos [28]. This chaotic circuit 
possesses the properties of simplicity and universality, and has become a standard 
prototype for investigation of chaos. In this section we will use the proposed 
method to control the nonlinear chaotic Chua's circuit. 
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5.1 Dynamical Equations of Chua's Circuit 

The modified Chua's circuit is described by the following dynamical system [28]: 

,.=
,=

,))(2
7
1(=

323

23212

11
3
121

uxqx
uxxxx

uxxxpx

+
++−

+−−

 (68) 

in which 21,uu  and 3u  are the external inputs and 21, xx  and 3x  are the states of 

the system. Considering 
7

100= −q  (as used in many references as [28]) and 

0== 32 uu  [28], one obtains the state space equations of the system as: 
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+−
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in which 10=p  [28]. 

5.2 Control of Chua's Circuit 

The dynamical equation of Chua's circuit (69) can be viewed as the nonlinear 
dynamical system in the form of (4) in which 
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and 

1=)(),(2
7
1=)( 1

3
1 xgxxpxf −−  (71) 

In order to model )(xf  in the interval of [-2, 2], TS membership functions labeled 
as about(-2), about(-1), about(0), about(1) and about(2) are considered. These 
labels correspond to fuzzy membership functions as: )/0.422)(( 22

1 +− xexp , 
)/0.421)(( 22

1 +− xexp , )/0.42( 22
1xexp − , )/0.421)(( 22

1 −− xexp  and 
),/0.422)(( 22

1 −− xexp  respectively. The following rules for the TS fuzzy model 
are considered. 
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Rule 1: If 1x  is 2)(−about  then )(= 11 ubxaBAxx T ++  

Rule 2: If 1x  is 1)(−about  then )(= 22 ubxaBAxx T ++  

Rule 3: If 1x  is (0)about  then )(= 33 ubxaBAxx T ++  

Rule 4: If 1x  is (1)about  then )(= 44 ubxaBAxx T ++  

Rule 5: If 1x  is (2)about  then )(= 55 ubxaBAxx T ++  

in which BA,  and C  are defined as in (70) and: 
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 (72) 

are estimated using linearization around the mean point. It should be noted that 
these values are reported for demonstration and are not used in the design of the 
controller. The gain of reference model ma  and gain of the observer L  are taken 
as: 

[ ] [ ] ,12.014.05.12=,01,0,0.0= T
m La −−−  (73) 

respectively. The gain of the reference model ma  correspond to the reference 
model ( mA ) as: 

⎥
⎥
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⎢
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⎢

⎣

⎡

−−
−−

−

014.2912.0
1114.0
01012.5

=mA  (74) 

whose eigenvalues are: }77.30.5539,.12{ i±−− . The design parameter Q  is taken 
as 

⎥
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0100
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in which 33×I  is the identity matrix. The positive definite matrix P  which is the 
solution of (14) is obtained as: 
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001
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Taking 1Q  as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1000
0100
0025

=1Q  (77) 

the positive definite matrix 1P  which is the solution of (44) is obtained as: 
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001
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The state matrix of the reference model is set as LCBaAA T
mm ++= . Using these 

design parameters, the regulation performances of the proposed control scheme 
are tested. Figures 1(a)-1(d) show the results of the regulation of the system as 
well as the state estimation performance of the observer.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1 
The regulation performance of the proposed observer and the controller when applied to Chua's chaotic 
system, a) The regulation response of Chua's chaotic system for x1, b) The performance of the observer 

for x1, c) The performance of the observer for x2, d) The performance of the observer for x3 
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The initial values for the states of the system, the observer and the reference 
model are considered as: Tx [0.5,0,0]= , Tx 5][0.4,0,0.0=ˆ  and 1][0.55,0,0.=mx  
respectively. In addition the tracking performance of the proposed controller is 
tested. Figures 2(a)-2(d) depict the tracking performance of the controller and the 
response of the observer. As can be seen from the figures, the tracking 
performance of the system under control is quite satisfactory. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2 
The tracking performance of the proposed observer and the controller when applied to Chua's chaotic 
system, a) The tracking response of Chua's chaotic system for x1, b) The performance of the observer 

for x1, c) The performance of the observer for x2, d) The performance of the observer for x3 

Conclusions 

This paper describes the design of an indirect model reference adaptive fuzzy 
controller based on an optimal observer for use with nonlinear dynamical systems. 
The proposed method adopts a TS fuzzy model to represent the dynamics of the 
system in hand and the adaptive model reference controller. The main contribution 
of the current work with respect to the previous studies in the field of model 
reference fuzzy controllers is that the current approach benefits from an optimal 
observer and therefore full state measurement is no longer needed. Its additional 
superiority over the observer-based TS adaptive fuzzy controllers seen in the 
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literature is that it is capable of making the system follow a reference model rather 
than just regulation of the system to zero. Moreover the proposed algorithm 
calculates the parameters of the TS fuzzy model from data using an optimal 
adaptation law. The stability of the approach is automatically accomplished with 
the derivation of the adaptive law by the Lyapunov theory. Lastly, through the 
application to a Chua's circuit, the applicability of the design to the practical 
problems of control of chaotic systems is verified. It is shown that the current 
approach is capable of controlling Chua's circuit with high performance. 
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