
Acta Polytechnica Hungarica Vol. 8, No. 4, 2011 

 – 23 – 

Factors Limiting Controlling of an Inverted 
Pendulum 

Tobiáš Lazar, Peter Pástor 
Department of Avionics 
Faculty of Aeronautics 
Technical University of Košice 
Rampová 7, 041 21 Košice, Slovakia 
E-mail: tobias.lazar@tuke.sk, pastor_peto@yahoo.com 

Abstract: The aim of this paper is to show the limitation during an inverted pendulum 
control process. Assume the control signal and its derivate are limited. The goal is to find 
the maximum permissible value of the θ angle and state if this value can be determined only 
by symbolical calculation by using Maple software. This maximum value must guarantee 
the stability of whole system and the quality of the transient process. The nonlinear 
mathematical model of the inverted pendulum implemented in Simulink is utilized for result 
verification. A detailed description of these limitations is important for the application of 
advanced control methods based on expert knowledge to aircraft equipped with a thrust 
vectoring nozzles system. 
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1 Introduction 

An inverted pendulum is an inherently unstable system. This system approximates 
the dynamics of a rocket immediately after lift-off, or dynamics of a thrust 
vectored aircraft in unstable flight regimes in negligible small dynamic pressure 
conditions [2]. Assume the force for the inverted pendulum control represents the 
force generated by a thrust vectoring nozzles system. The nozzle deflection is 
limited up to ± 20 deg, the rate of deflection is limited up to ±60 deg/sec and the 
nozzle dynamics is described by 2nd order transfer function, similarly as in the 
publication [1]: 
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The dynamics of the pendulum is given by following nonlinear differential 
equations system [7]: 
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where M – cart mass (in this case it can be neglected), m – pendulum mass 
(m=15180 kg), l – length to the pendulum centre of gravity (l=5,4 m), J – moment 
of inertia of the pendulum (J=4.2138·105 kg·m2), g – gravity (g=9.81m·s-2), θ – the 
angle between pendulum and vertical axes [3]. 

The θ angle transfer function can be obtained after linearization of the system 
described by equations (2), (3): 
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The algorithm for pendulum control is given by following control law: 
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where F(s)=U(s) – inverted pendulum control signal, P – proportional coefficient, 
I – integral coefficient, D – derivative coefficient. The control system structure is 
depicted in Figure 1. 

 
Figure 1 

Control system structure with inverted pendulum transfer function 

The final transfer function of the system shown in Figure 1 is: 
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2 Control Signal Limitation in Steady State 

Utilize the equation (3) for maximal θ angle computation. Condition θ=const is 
valid for steady state. If θ=const, its derivate is zero and its second derivate is also 
zero. The following equation can be obtained by solving equation (3): 
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Expression 
2

2

d x
m

dt
 represents the control signal, the maximum value of which is 

given by: Fmax=Tsinφ [6], where φ – the angle of deflection of vectored nozzle. 
Assume the thrust and aircraft’s weight are equal (T=G=mg). It is possible to 
transform equation (7) to get the following equation: 

sin cos sinmg mgϕ θ θ=  (8) 

Divide equation (8) by expression cosθ: 
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The condition (10) for maximum value of θ angle in steady state has been 
obtained by solving equation (9): 

( )max maxsinarctgθ ϕ=  (10) 

3 Limitation during Transient Process 

Inverted pendulum control signal is denoted as Z(s) and is depicted in the structure 
shown in Figure 2. This structure can be utilized for Z(s) transfer function 
calculation. 

 
Figure 2 

Control system structure with signal's description 
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The following equation is valid for Z(s): 
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Solve the equation (11) and place the expression involving Z(s) on the right side: 
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Z(s) transfer function can be calculated from the previous equation: 
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Denominators of transfer functions (6) and (13) are equal and represent the poles 
of the transfer function and their values guarantee whole system stability and 
transient process quality. Because the proportional, derivative and integral 
coefficients influence the poles’ placement, it is necessary to select optimal 
values. The 3rd order polynomials in denominator of transfer functions (6) and 
(13) are the same. Assume that the 3rd order polynomial has one real root and two 
complex conjugate roots: 

( )( )2 22 Z Z Zs s sξω ω ω+ + +  (14) 

where ωZ is the desired natural frequency of the system and ξ is the desired system 
damping. Apply convolution operations to compute the product of polynomial in 
equation (14) to obtain the generalized 3rd order polynomial form: 
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Substitute the denominator of transfer function (13) by the generalized 3rd order 
polynomial given by equation (15): 
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Transfer function (16) must be transformed into time domain by applying the 
inverse Laplace transformation for maximum positive and negative values 
determination. Maple software is used to provide this transformation [4]. It is 
possible to find a time function of equation (16), but this function is complicated 
for further symbolical analyses. State the damping value of the system as ξ=1 and 
substitute this value into equation (16): 
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Polynomial of equation (17) has a triple root and is relatively simple for further 
symbolical analyses and represents the ideal transient process with acceptable 
quality. The optimal coefficient of the PID regulator can be found by comparing 
denominators of transfer functions (6), (17): 
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The derivative of the control signal in time domain can be obtained by applying 
inverse Laplace transform to equation (17): 
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Control signal step response in ‘s’ domain is given by following equation: 
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The control signal in time domain can be obtained again by applying the inverse 
Laplace transform to equation (22) and is described by the following equation: 
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In Figure 3 is shown the inverted pendulum’s control signal step response given 
by equation (23). Value 2

0ω  is given in transfer function (4) and desired natural 
frequency value has been selected (ωZ=2). 
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Figure 3 

Control signal time response 

The extreme value theorem states that if a function f is defined on a closed interval 
[a,b] (or any closed and bounded set) and is continuous, then the function attains 
its maximum, i.e. there exists c Є [a,b] with f(c) ≥ f(x) for all x Є [a,b]. The same 
is true for the minimum of f. The derivative of function f in c is zero. Equation 
(21) represents the derivative of the control signal. The equation has two roots: 
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The function described by equation (23) reaches its maximum positive value in 
time t1 (t1=3.56 s) and its maximum negative value in time t2 (t2=0.27s). It can be 
observed in Figure 3. Equations (25) and (26) represent maximum positive and 
negative values of control signal and are gained by substituting (24) into (23): 
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where Ω1 and Ω2 are given by equation (27), (28) respectively: 
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Maximum force is transformed into maximum angle by using following 
assumption: 
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The maximum θ angle value for the desired frequency ωZ can be calculated by 
utilizing equation (29). θmax values are depicted in Figure 4. 

 
Figure 4 

Maximum θ angle values depicted as a function of the desired natural frequency value 
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4 Limitation Given by Vectoring Nozzle Deflection 
Rate 

The derivative of the control signal given by equation (21) is depicted in Figure 5. 

 
Figure 5 

Control signal derivation depicted in 3-dimensional graph for ωZ values in region from 2 to 5 rad/sec 

It can be observed in Figure 5, that the control signal derivative reaches its 
maximum value in time t=0. The following expression can be utilized for 
maximum θ angle computation: 
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The maximum derivative of the control signal can be determined by applying the 
derivative operation to the right side of equation (29): 
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Assume in time t=0 the nozzle deflection is zero so cosφ=1. The maximum nozzle 
deflection rate is 60 deg/sec (approximately π/3 rad/sec) and the maximum thrust 
is supposed to be constant (Tmax=148916N): 
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5 Nonlinear Analyses 

The structure of the system used for nonlinear analysis is shown in Figure 6 and 
consists of two main blocks. Block ‘vectored_nozzles’ describes the vectored 
nozzles together with their dynamics and limitations mentioned in the introduction 
of this paper. The nonlinear mathematical model of inverted pendulum given by 
equations (33) and (34) is implemented in block ‘Inverted pendulum’. 

( ) ( ) ( )2 222 2

2 2 2

cos sin cosml ml gd x d
M m ml u

J ml dt dt J ml

θ θ θθ
+ − = − +

+ +

⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 (33) 

( ) ( )2 22 2
2

2

cos cos
sin

ml d ml d
J ml mlg ml

M m dt M m dt
uθ θ θ θ

θ+ − = − +
+ +

⎡ ⎤⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (34) 

These equations are based on equations (2) and (3) that have to be rewritten for 
algebraic loop elimination [2]: 

 
Figure 6 

Structure used for nonlinear analyses 

It can be seen in Figure 6 that the force generated by the vectoring system is 
controlled by the pitch command. The coefficients of the PID regulator can be 
calculated by dividing equations (18), (19) and (20) by the maximum thrust value 
(Tmax=148916N ). It is possible to consider this simplification only for small angle 
(up to 20 deg). The following m-file was utilized for coefficients’ calculation: 
m=15180;%[m] mass of the aircraft 
J=4.2138e5;%[kg*m^2] moment of inertia 
l=5.4;%[m] CG position 
T=148916;%[N] thrust 
g=9.81;%[m*s^2] gravity 
omega=2;%desired natural frequency value 
P=-(3*omega^2*(J/l)+m*g)/T;%proportional coefficient 
I=-(J*omega^3)/(l*T);%integral coefficient 
D=-(3*omega*J)/(l*T);%derivate coefficient 



T. Lazar et al. Factors Limiting Controlling of an Inverted Pendulum 

 – 32 – 

The natural frequency desired value is shown in the first column of Table 1. The 
values in 2nd and 3rd column are depicted in Figure 4. The values in the 4th column 
are the minimum of the values calculated according to equations (10), (25) and 
(26). The values obtained from nonlinear analyses when the rate limitation and 
nozzle dynamics has not been assumed are in the 5th column. In the 6th column are 
values computed calculated according to equation (30) in Chapter 4. The values 
obtained from nonlinear analyses with rate limitation and nozzle dynamics are in 
the last column of Table 1. 

Table 1 

ωZ θmaxt1 θmaxt2 θ(2,3) θmax θ(4) θmax 
2 0.341 0.737 0.3295 0.324 0.2498 0.327 

2.5 0.329 0.465 0.328 0.313(0.316) 0.128 0.279 (0.297) 
3 0.305 0.321 0.305 0.298(0.303) 0.074 0.144 (0.178) 

3.5 0.277 0.234 0.234 0.276(0.287) 0.047 0.081(0.093) 
4 0.248 0.179 0.179 0.245(0.261) 0.031 0.042 (0.058) 

4.5 0.221 0.141 0.141 0.211(0.231) 0.022 0.037 
5 0.197 0.114 0.114 0.181(0.203) 0.016 0.023 

The values obtained from nonlinear simulation are in the 5th and 7th column of 
Table 1. Both values delineate maximum value of given θ angle of the system in 
stable conditions but transient process for the first values is with acceptable 
quality (Figure 7) and transient process for the values in brackets is with poor 
quality (Figure 8). The desired frequency for both responses was ωZ=4. 

 
Figure 7 

θ angle (solid line) and rate (dotted line) time response with acceptable quality of the transient process 
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Figure 8 

θ angle (solid line) and rate (dotted line) time response with poor quality of the transient process 

Time response in Figure 8 converges, but the observable oscillations increase the 
settling time. 

From Table 1, it is visible that the calculated values approximately describe the 
limiting conditions. This behaviour of the system is explained in Figure 9b where 
the time response of the control signal is depicted. It can be observed that the 
control signal reaches its maximum value. The oscillations are observed exactly in 
time when control signal reaches its maximum value. 

 
Figure 9 

θ angle (solid line), rate (dotted line) and control signal time response 
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If the given θ angle value does not exceed the limiting conditions, calculated 
according to the procedure shown in Chapters 2 and 3, the system’s time response 
will certainly be stable with required transient process quality. It is necessary to 
perform an experiment (e.g. nonlinear simulation) for accurate marginal θ angle 
value determination. The dynamic properties of the nozzle are much more limiting 
for the higher desired natural frequency (approximately from ωZ=4). It can be 
seen by comparing limiting θ angle values in the 5th and in the last column of 
Table 1. 

Conclusions 

The possibility to symbolically calculate limitation by using linear analyses and 
Maple software was shown in this paper. This procedure is appropriate for 
relatively simple transfer functions and the calculated results only approximately 
describe the limiting conditions, but do guarantee the system stability. It was 
shown that it is necessary to perform an experiment for marginal value 
determination. The obtained values provide a better idea about inverted pendulum 
dynamics and all factors considered for successful realization of the control 
system. These facts are also expected to be utilized during application of advanced 
control methods based on expert knowledge into the inherently unstable systems. 
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