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Abstract: The autocorrelation function describing linear dependence is not suitable for the
description of the residual dependence of regime-switching models. Therefore, we would
like to investigate the description of this dependence with a ‘k-lag auto-copula’, which is a
2-dimensional joint distribution function of the bivariate random vector (Yt , Yt—k ) of time
lagged values of random variables that generate time series (in the analogy of the
autocorrelation function of stationary time series). In this contribution, we will describe the
dependence of time lagged residuals of SETAR models by means of copulas, and we will
test the independence of these residuals.
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1 Introduction

The first models used for modelling economical and financial time series had a
linear character (shocks were assumed to be uncorrelated but not necessarily
independent and identically distributed - iid). Although many of the models
commonly used in empirical finance are linear, the nature of financial data
suggests that nonlinear models are more appropriate [5]. Therefore, in recent
years, increasing attention has been given to modelling and forecasting economic
time series by non-linear models, such as bilinear models, neural networks,
regime-switching models, etc. Among other types of non-linear time series
models, there are models to represent the changes of variance along time
(heteroskedasticity). These models are called autoregressive conditional
heteroskedasticity (ARCH) and Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) models. Here changes in variability are related to, or
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predicted by, recent past values of the observed series. In this paper we focus on
the model SETAR (from the class of regime-switching models).

The autocorrelation function is suitable for the description of the residual
dependence only in the case of linear models. So the autocorrelation function is
not suitable for the description of the residual dependence of regime-switching
models (because these models have nonlinear character).

Therefore we investigate the description of this dependence with ‘k-lag auto-
copula’, which is a 2-dimensional joint distribution function of the bivariate
random vector (Y,, Y,—; ) of time lagged values of random variables that generate
time series (in the analogy of the autocorrelation function of linear stationary time
series).

First we must test independence in the residuals {éz}. For our case we use the
BDS test. When the BDS test shows residual dependence at a significant level, we
use k-lag autocopulas for the modelling of these dependence residuals.

The paper is organized as follows. After a general introduction, the theoretical
basis of SETAR model, copulas and some tests are described. The paper continues
with their application to modelling the dependence of residuals of real time series
with auto-copulas.

2 Theoretical Basis

2.1 Model SETAR

In this paper we focus on the class of regime-switching models that are good to
interpret and are also very suitable for modeling a large amount of real data. The
basic feature of these models is their “control” with one or more variables.

Typical models belonging to this class are TAR models (“Threshold
AutoRegressive”). They form the basis of regime-switching models with regimes
determined by observable variables. These models assume that any regime in time
t can be given by any observed variable g, (indicator variable). Values of g, are
compared with threshold value c. In the case of a 2-regime model, the first regime
applies if ¢; < ¢, the second if ¢, > c.

We have the model SETAR when the variable ¢, is taken to be a lagged value of
the time series itself, that is ¢, = X, for a certain integer d > 0. The resulting
model is called a Self-Exciting Threshold AutoRegressive (SETAR) model. For
example the 2-regime model SETAR with AR(p) in both regimes has the form
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X, =(¢0,1 o Xt P,0X,, Il—l(XH, >C)]+
+(¢0,2 +Pa X, +"'+¢p,2Xz—p)](Xz—d >c)+e, M

where {et} is the strict white noise process with Efe/ = 0, Dfe]

= 0'e2 forallt=1,...,n and 1(A) is the indicator function with values 1(A) = 1 if the
event A occurs and 1(A) = 0 otherwise.

In the case of a 3-regime model, we must define 2 constants ¢; ¢, where
0S¢ <€ S0 Model SETAR with AR(p) in all regimes has the form

Xt =¢0,j +¢17th71 +"‘+¢p,th7p +e if €)1 <Xt—d SCj’ j: 1,2,3 (2)

For more details see [1], [5].

2.2 The BDS Test

This test was presented in [2] and can be used to test independence in residuals
{éz} .Forsome 7€ N and & > 0 is the test based on the correlation integral

C,. =2, -, <e)

m+1<r<t<T,

A

et,n - er,n

’

where T, =T—-n + 1, ét,., = (ét,_..,éHH) , 1(A) is the indicator of the event A,

and ”" denotes the maximum norm (also known as the Chebyshev norm) in R4

(i.e., ”Z" =maXiqi<y |Zi| for 2=(215--,24) ). Then the BDS statistic is
ABDS = [(T_m)/ Vn,g ]1/2 (Cn,g - Clr,lg) (3)
where

n—1
Ve = 4K +4(n=1)7C}" —4n’ K, C2"D 48> K1 CY,
j1

T T T
K,=T-m= > 3 S, -e <o, —&,|<e).

K=m+1 r=m+1 t=m+1
T T
C,=(T-m)? z Zlqé, ~&|<e)
r=m+1 t=m+1

and also 7 is the length of the time series, m is the order of the process AR and n
embedding dimension (in our case a lag order of the residuals).

Agps has a N(0,1) asymptotic distribution when {e,} are i.i.d.
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When the BDS test at a significant level shows residual dependence, we use k-lag
autocopulas for modelling these dependent residuals.

2.3 Copula

2-dimensional copula is a function (see e.g [8])
c:[0.1 = o] )
such that
C00,y)=Cx,0=0, C(l,y) =y, C(x, 1) =x,
forall x, y € [0, 1] and
Cxry) + Cx2, y2) — C(x1,y2) — Clx2,y1) 2 0
for all x;, x,, y;, y2 € [0, 1] with x; < x5, y; < o

The most important applications of 2-dimensional copulas are related to a well
known, very convenient alternative of expressing the joint distribution function of
2-dimensional random vectors (X, Y) in the form

F(x, y) = C(Fx(x), Fy(y) ), (5)
where Fy, Fy are marginal distribution functions.

Let X, Y be some continuous random variables with joint distribution function
F(x,y) and copula C satisfying (5).

Kendall's tau for the random vector (X, Y) is defined (cf. [4]) by
(X, ¥)=P{x - X|r-¥)> o) P{x-¥ [¥-¥)<0}, (6)
where ()N( Y ) is an independent copy of (X, Y).

It is well know that (cf. [4])

(X ¥)= 4.[.[[071]2 Cu, v)dC(u, v)-1. (7)

2.3.1 Archimedean Class of Copulas

There are many classes of copulas, but in this paper we will use only copulas from
the Archimedean class.

Copula C belongs to the Archimedean class if (see e.g. [7], [8], [4])
Cy (u, v) = ¢(71)(¢(u)+ ¢(v)) foru,ve(0,1],
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where ¢: (0, 1] — [0,0) is a convex, decreasing function (satisfying ¢(7) = 0) that
is called a generator of the copula Cy, and # " : [0,00 — [0, 1] is given by

0 else

#(x)=sup{ < (0,1]] #(t)> x} = {qj_l(x) a ¢( +).

2.3.2  Characteristics of some Archimedean Copulas

As a generator uniquely determines an Archimedean copula, different choices of
generators yield many families of copulas that consequently, in addition to the
form of the generator, differ in the number and the range of parameters. We
summarize some basic facts related to the most important one-parameter families
of Archimedean copulas (see e.g. [4]). Note that Clayton and Gumbel copulas
model only positive dependence (measured by the Kendall's 7), while Frank
covers the whole range [-1, 1].

The following useful relation for Archimedean copulas are presented in [4]
1

r=1+4jﬁdt’ (8)
2 o(t)

Gumbel family

Generator ¢(t) = (— Int )9, where 0> 1,

l

Ce(u, V) = e—[(—lnu)e+(—ln V)S]A ,

o901
Kendall’s 7= R

Strict Clayton family (Kimeldorf and Sampson)

4

t
Generator ¢(2) =

, where 6> 0,

-1,
Colu, v) = (u*9+v*9—1)4’ and C/(u, v) =11 =uv,

0
Kendall’s t = 942"
Frank family
e -1
Generator ¢(t) = ~ In o 1) where 6 € %,
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. (e‘“ —1Xe—‘9v —1)} |

Co(u, v) = —lln
o(u, v) 0 7 )

t
e -1

4 17
Kendall’s 7 = 1_5(1_D1(9)), where D;(x) = ;J- dt s the Debye

0
function.

2.4 Maximum Pseudolikelihood Method (MLE) of Copula
Parameters Estimation

Suppose that a copula Cy(u, v) is absolutely continuous with density

62

Ce(”av): Ce(”a").

Ou ov

This method (described e.g. in [6]) involves maximizing a rank-based log-
likelihood of this form

z R, S,
L(G)zZln(ce(n+l;n+ljj, ©9)

i=1

where n is the sample size and 0 is vector of parameters in the model. Arguments
R.

1

il el equal to corresponding values of empirical marginal distributional

functions of random variables X and Y.

This L(8) function we use to define the Akaike information criterion (AIC) in the
form (see e.g. [6])

AIC = -2L(8) + 2k (10)
where £ is the number of independent parameters in the model.

AIC we use to compare the goodness of fit of our estimated model. A smaller AIC
value means an improvement in the quality of the model fitting.

To obtain the initial values of the parameters for maximalization of the L(0)
function, we apply the mean square error method. 1t is based on the
minimalization of the distance to the empirical copula

1 R S;
C =—>1 < L <
n(u,v) n; (n+1 u’n+1 vj.
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2.5 Goodness of Fit Test for Copulas

Let {(xj, y)),j =1, ..., n } be n modeled 2-dimensional observations, Fx, Fy their
marginal distribution functions and F their joint distribution function.

We say that the class of copulas Cy is correctly specified if there exists 6, so that
Fx.y)=Co, (Fy (x).Fy (v))
holds.

White (1982) ([11]) showed that under correct specification of the copula class Cg
holds the following information matrix equivalence

—Ay, = By,
where

Ay = ElVé Ince(Fy (x). Fy (J/))J
By = £V nco(Fy (0, ()V5 Inco(Fy () 75 ()]
and cg is the density function of Cy (copula Cy must be absolutely continuous).

The testing procedure, which is proposed in [9], is based on the empirical
distribution functions

Fr()=231(x, <) and ﬁy(s):%il(yi <)

i=1

and also on the consistent estimator © of 0, that maximizes
n

ZIHCO(FX(xi)’FY(yi)).

i=1

To introduce the sample versions of 4 and B put

4,0)=V3 IncylFy (). B (v,))
B,(6)= Vo Inco(Py (v, Ly (v )V IneolBy (v, 1 By (3,)

and
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d,(0)= vech(4;(0)+ B;(8)),

vech (M) is the vector of dimension & x 1 containing the upper triangle (in the
lexicographic ordering) of the symmetric matrix M of the type & x k (where £ is
the dimension of the space of parameters 0).

R 1 <
Put Do :;Zdi(e).

i=1

Under the hypothesis of proper specification the statistics x/;f)e has asymptotical
. 1 ,

distribution N(0, V), where V is estimated by VY = Ezdz‘ (9)~di(9).

Therefore

22 =Dy VD, ()

2
is asymptotically as k(’”% .

3 Results

In this section, we summarize all the results in tables and graphs. For our research
we used 20 real data series (exchange rates, varied macroecomic data and other
financial data series).

First, we ‘fitted’ these time series with the SETAR model (see [3]). We based the
selection of the models (optimizing the number of states and the order of the local
autoregressive models) on the BIC criterion (see, e.g. [1], [5]). Recall that the
residuals of these models are supposed to be independent (not only serially non-
correlated). This property can be tested by the BDS test (see [2]).

Inspired by the approach of Rakonczai (2009) ([10]), we applied autocopulas to
the time series of the above-mentioned residuals in order to gauge how much they
violate the assumptions of independence. If the test showed dependence in
residuals, we described this dependence of time lagged residuals of SETAR
models by means of copulas. For each couple (étaét—k) and each class of copulas
we subsequently performed the following sequence of procedures:

a) calculation of ML estimates and AIC,

b) goodness of fit tests and corresponding p-values.
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3.1 Results — The BDS Test

First we tested our real data series with the BDS test. Zero hypothesis is

independence in residuals {ét}. We used significance level o = 0.05. In Table 1
we can see the results of the BDS test and the number of regimes of SETAR
model for which it is used.

Table 1
Results of the BDS test

The BDS test
data suitable for p value (Hy: independent) conclusion (o =
2 regimes 3 regimes 0.05)
HUF 3 regimes 0,039277 0,491910 independent
SKK linear 0,497770 independent
PLN 3 regimes 0,021701 0,062389 independent
CZK linear 0,003660 dependent
SVK unemploy 2 regimes 0,129207 0,028170 independent
SVK inflation 3 regimes 0,000371 0,048212 dependent
DoS USA 3 regimes 0,028691 0,064259 independent
GDP HUF 3 regimes 0,002610 0,000015 dependent
GDP SVK 3 regimes 0,016147 0,029499 dependent
GVA agri 3 regimes 0,154628 0,489461 independent
GVA constr 3 regimes 0,141906 0,492069 independent
GVA fin 3 regimes 0,024453 0,490318 independent
GVA industry linear 0,007034 dependent
GVA other 3 regimes 0,022448 0,493020 independent
NofB10 SVK 3 regimes 0,011104 0,048212 dependent
NofB100 SVK 3 regimes 0,000190 0,107229 independent
CAP. GOODS 2 regimes 0,013195 0,051269 dependent
EMPLOY SVK linear 0,000081 dependent
UNEMPLOY ocist 3 regimes 0,114267 0,000244 dependent
TRANSPORT SVK | 3 regimes 0,153837 0,211726 independent

The BDS test determined dependence in residuals in 9 cases (from 20) and here
we used the description of residual dependence with "k-lag auto-copula’.

In the next section 3.2 we describe in detail the results for two time series. In the
case of time series ‘CZK’ and ’GDP HUF’, the independence is reached only for k
=23 (CZK) and k = 18 (GDP HUF); so for these time series the SETAR model is
not appropriate and therefore results for this time series will not be mentioned.
Results for all 7 remaining time series we will only present in the form of tables
and graphs in section 3.3.
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a) Unemployment (seasonally adjusted)

In case of the time series ‘Unemployment (seasonally adjusted)’ for 1-lagged
residuals, the BDS test showed dependence. Therefore, we used the BDS test also
for lag k = 2,3,... etc. to find out the couple (residuals and 4-lag residuals) where
the BDS test determines independence. In this case it is k = 9. For these time
lagged residuals of the SETAR models, where we have dependence, we calculated
Kendall 7. Then we described the dependence of the time lagged residuals of the
SETAR models by means of an Archimedean class of copulas (Gumbel, strict
Clayton and Frank). Then we tested the ‘goodness’ of the copulas with the
Goodness of Fit test and finally we calculated the L2 norm distance and AIC to
see which copula was the best for the description of our couples. All of these
results are in Table 2 and, for better illustration, these results are also in the graphs
underneath.

Note: ‘d’ means dependent and ‘1’ independent

Table 2
Summarized results for the Kendall 7 , parameters of copulas, GoF test, L2 norm and AIC in case of

lag 1 to 9 for time series ‘Unemployment (seasonally adjusted)’

lag 1 2 3 4 5 6 7 8 9
pvalue (Hy - _, o610 0000300,00036(0,00028( 0,000180,00171 0,0014 [0.00616| 0,0523
BDS test indep.)
conclusion d d d d d d d d i
Kendall tau 0,55206 | 0,4362 |0,35148]0,32966(0,2949510,32123| 0,2694 | 0,2602 | 0,2462
parameter Gumbel  2,13894|1,7221 (1,52794(1,44275|1,39507 |1,44965| 1,0495 |1,34303
s of Clayton 1,60655 | 1,0041 [0,73268|0,55573|0,42898 |0,43848| 0,1329 (0,43478

copulas Frank 6,84353 | 4,6904 [3,69323(3,21936| 2,903 |3,28623|0,3755 |2,5776
Gumbel 0,138390,2802 [0,34904/0,21064|0,11198{0,37077| 0,3858 [0,29188

(;’_l‘:"t‘:s‘:f Clayton | 0,36567|0,1200 [0,28685]0,45586] 0,3514 [0,43836| 0,1724 [0,04778
Frank 040747/ 0321 [0,33888]0,03204|0.44108 |0,12063] 0,2002 [0,41271
Gumbel  0,87811| 0,94 [0,90618(1,19393|1,16001 |1,40264| 1,3079 |0,99168
I&lzsg‘;fc’;’ Clayton | 2,24868 | 2,4014 [2,19219] 2,6145 | 2,63743 [3,07746| 1,3501 [1,93755

Frank 1,09679 | 1,2584 {1,09337|1,31255(1,40455|1,66317| 1,3125 |1,16871
Gumbel |-100,192(-57,399|-34,871-27,957|-23,0306(-27,141| 1,742 |-17,275

AIC Clayton -80,2784|-42,485(-24,777|-14,898|-7,58769|-7,7959 | 1,5358 |-8,3735

Frank -97,7153|-56,299(-35,316(-28,278|-22,3284|-26,816| 1,8188 |-17,059
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Kendall tau
Copula parameter

8 0,6 4
= o \
6 04
B
A _ 03 %
4 - -

& - BTy 02
2] W & - -A o1 ]
= — — —
0 T T T T T T T " 0
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8
shift
shift
‘—O—Gumbel — 4 —Clayton = = &= = Frank ‘
L2 nor mdistance AIC
07 20-
0,6 A o
05 g W~ - -~ g~ N 20
; uo 40
60
’ . 80
-100
-120+
0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 shift

——4——Gunbd — -l —Clatn = - A= = Frank ‘ Wcumbe [ICayton OFark

Figure 1
Graphs of parameters of copulas, Kendall 7 , L2 norm and AIC in case of lag 1 to 9 for time series

‘Unemployment (seasonally adjusted)’

For each couple (ét 2k ), k=1, ..., 8, the optimal models in all three considered
Archimedean copulas classes pass the GOF tests. The minimal values for the L2
norm was attained for the optimal model in the Gumbel class for all lagk =1, ...,
9. We observed that the autocopulas for the residuals were with increasing lag k
near to the (independence indicating) product form. The value of Kendall 7 also
reduces with increasing lag k.

On the other side, because the independence is reached for high value £ = 9, the
SETAR model is not appropriate for these time series.

b) Inflation in Slovakia

In the case of the time series ‘Inflation in Slovakia’, the BDS test showed
independence earlier, already for the lag 2, as we can see in Table 3 and Figure 2.

—47 -



A. PetriCkova

Modelling of the Dependence Structure of Regime-Switching Models’ Residuals Using Autocopulas

Table 3

Results for time series “Inflation in Slovakia”

BDS test
“ Good of fit test copulas parameter

lag E:O/% E Kendall

=] 17 tau

55 | =

ERN - Gumbel | Clayton Frank Gumbel | Clayton Frank

-2 |8
1 004821 | d | 0,2237 | 0,015551 | 0,48396 | 0,435379 | 1,26234 | 0,484523 | 2,19487
2 0,05345| i | 0,0643 | 0,143151 | 0,40402 | 0,054031 @ 1,11077 | 8*10° 0,58843

Cop ula parameter

0,25

Ken dall tau

25

N

2 4. 027
15 ... 0,15
| *— 01
DR 0,05
05
. =—=___ — = 0
1 2 shift
——&——Gumbd [ | Clayton a Frark

L2 norm distance

)
1 2 shift

——e——Gumbel ] Clatn a Frark ‘
Figure 2

1

4
2
0
2
4
6
8
-10

2 3 4
—e—Ken dall tau
AlIC

2
shift

WGun kel [Clayton [JFrank

S shift

Graphs of parameters of copulas, Kendall 7 , L2 norm and AIC in case of lag 1 and 2 for time series

‘Inflation in Slovakia’

Among considered Archimedean copulas classes, only the Clayton and Frank class
provide models (for k = 1) which were not subsequently rejected by the goodness
of fit tests described above. The minimal values for the L2 norm and AIC was
attained for the optimal model in the Frank class. The value of Kendall 7 reduces

with increasing lag k.
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3.2 Results for Remaining Time Series in Graphs and Tables

In this section we can see results for all time series, where the BDS test in time
lagged residuals (k = I) rejected Hy (except ‘CZK’ and ’GDP HUF’) in tables and
graphs.

a) p-value of BDS Test

In the next 7 pictures in Figure 3, we can see how the change p-value of BDS test
until the residuals will be independent. We can see that for 4 time series the
residuals are already independent for k = 2.

Une nployment SVK
GVA irdusty
006
Q%é 004
006
004 002
qog 0 — . ]
1 2 3 4 5 1 2 3 4 5 6 7 8 9
Employment SVK Capital Goods
0,1 0,07
008 , 0,06
! / 0,05
0,06 0,04 4
0,04 | 0,03
' 0,02 4
002 1 0,01
O L L L | I} D
1 2 3 4 5 6 7 8 9 1 2
GDP SVK NofB10 SVK
0,06 012
0,05 4 0,1
0,04 008
' 006
0,03 0,04
0.02 1 002
0,01 4 0
0 1 2
1 2
SVK inflation
0,0%
0.6 % /
0,045
1 2
Figure 3

The graphs of changes of p-value of the BDS test
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b) The Values of Kendall 7

In Figure 4 we can see that the growing lag k reduces the value of Kendall 7 until
the residuals are no longer dependent.

Unemployment SVK

G VA industry
0,6
0,5 ‘\\
06 - 0,4
04 | A 03 %
02 A 0,2
0 /\ N e 01
02 Q\%/! 4 W7 8 \—/ 1 0
04 1 2 3 4 5 6 7 8 9
it
- shift
Emplym et SVK Capital @ods
01
w - a a
0
o1 1 2 3 4
02
03
shift <hift
GDP SVK NOBLO SVK
0,4
02
0
i/ 2 4 6 8 N\
0,2
04
shift shift
SvKinflation
0,25
02 *®
015
01
005
0
1 2 3 4 5 Sshift
Figure 4

The graphs of changes of Kendall 7
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c) Parameters of Copulas
The results for the parameters of the autocopulas are summarized in the Table 4.

Table 4

The table of changes of parameters of copulas when we aproach to the independence

Gumbel | 1,19905 1 1,04948 | 1,7498 | 1,07927 | 1,04948 1 1,04948

Employ Clayton | 0,161757 0,1 0,132946 [0,992168 | 1,00E-01 |0,132946|0,058127 | 0,132946

SVK
Frank | 1,30708 |-2,78766 | 0,375501 | 4,73045 | 0,586813 | 0,375501 | 0,005865 | 0,375501

Unemploy Gumbel | 2,13894 | 1,72208 | 1,52794 | 1,44275 | 1,39507 | 1,44965 | 1,04948 | 1,34303

seasonal Clayton | 1,60655 | 1,00458 | 0,732684 |0,555728 | 0,428978 | 0,43848 |0,132946 | 0,434783

adjustment | Frank | 684353 | 4,69038 | 3,69323 | 321936 | 2903 | 328623 |0,375501| 2,576
Gumbel 1 1 1 1,57595 1

.GVA Clayton | 1,00E-01|1,00E-01 | 1,00E-01 |0,996258 | 1,00E-01
industry
Frank  -1,02654 |-2,29807 |-0,672488 | 4,0506 |-0,719123
Gumbel | 1,26234 | 1,11077
. SVI.( Clayton  0,484523|8,01E-06
inflation

Frank | 2,19487 |0,588432
Gumbel 1 1

GDP SVK | Clayton | 1,00E-01 | 6,86E-05

Frank  -1,20478 | -1,41876
Gumbel 1 1,18813

NofB10 | Clayton | 1,00E-01 |0,108703

Frank  -2,335750,913485
Gumbel 1 1,0294

Cap.

0,1 |1,00E-01
Goods Clayton

Frank | -2,281150,338111

We can see how the parameters of the copulas change when we approach to
independence. The parameter of the Gumbel copula approaches to 1, the
parameter of the Clayton copula approaches to 0 and also the parameter of the
Frank copula (in most cases) approaches to 0.

d) Goodness of Fit Test (GoF Test)
The results of the p-value of the GoF tests are summarized in the Table 5.

Table 5
The table of changes of p-values of GoF test

Gumbel | 0,49464|0,05061 | 0,38581 | 0,00757 | 0,39491 | 0,38581 | 0,20417 | 0,38581
Clayton 0,25181)0.38163|0,17242|0,01314 | 0.30665 | 0,17242 | 0,28867 | 0,17242
Frank | 0,42371]0,24724]0,20022|0,40317|0,27459 | 0,20022 | 0,04971 | 0,20022

Employ
SVK
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Unemploy Gumbel |0,138390,28018(0,34904 | 0,21064 | 0,11198 | 0,37077 | 0,38581 | 0,29188
seasonal | Clayton 0,365670,12002|0,28685 | 0,45586 |0,35140 |0,43836 | 0,17242 | 0,04778
adjustment | Frank 040747032097 | 0,33888 | 0,03204] 0,44108 | 0,12063 [ 0,20022 | 0,41271
Gumbel |0,30037|0,17217|0,36434 | 0,25722 | 0,49017

. GVA Clayton  0.14088 0.00253 | 0.32579{0,17110 | 0.05172
industry
Frank | 0,03746|0,183190,40797 | 0,17856 | 0,43309
Gumbel |0,01555|0,14315
. SVI.( Clayton | 0,48396 | 0,40402
inflation

Frank | 0,435380,05403
Gumbel |0,07065 | 0,09656
GDP SVK | Clayton 0.31525(0,41367
Frank | 0,062540,42859

Gumbel | 0,23687 | 0,37940
NofB10 | Clayton 0.14667|0,18414
Frank 0,311820,34269
Gumbel | 0,12051|0,07906
Cap. Goods | Clayton 0.02399 |0.35867
Frank | 0,47009 | 0,46636

Optimal values of the p-value (result of the GoF test) are bigger then 0.05 (a
significant level) and in most cases it is fulfilled.

e) L2 Norm Distance
The values of L2 norm distance are in Table 6.

Table 6
The table of values of L2 norm distance

Gumbel | 1,80711 [4,51264| 1,30795 | 1,3504 |2,39809 | 1,30795 | 1,82147 | 1,30795

Employ
SVK Clayton 227074 |5.12645| 1,35004 |2,45897 | 2.66454 | 1,35004 | 1,84872 | 1,35004
Frank | 1,87764 |1,63538| 1,31251 | 1,2516 |2.49996 | 1,31251|1,82138 | 1,31251
Unemploy Gumbel 0,878114| 0,94 [0,906184 |1,19393 | 1,16001 | 1,40264 | 1,30795 | 0,991681
seasonal | Clayton | 224868 |2,40135| 2,19219 | 2,6145 |2,63743|3,07746 | 1,35004 | 1,93755
adjustment | prank 1,09679 | 1,25838| 1,09337 | 1,31255 | 1,40455|1,66317|1,31251 | 1,16871

Gumbel 2,22829 [3,81971 1,68091 |1,65548 |1,79534

GVA Clayton
industry y 2.74804 |4.46763 | 2.16497 | 1,86848 | 2.248
Frank | 1,57291 |1,81806 | 1,45327 |1,41446|1,57783
Gumbel | 136999 |1,50498
SVK Clayton
inflation y 1,3878 |1,79565

Frank | 13095 |1,55809

-52-



Acta Polytechnica Hungarica Vol. 8, No. 3, 2011

Gumbel | 245152 |3,07762
GDP SVK | Clayton 296081 |3,07802

Frank | 1,88178 |2,09258

Gumbel | 424449 |2,72947

NofB10 | Clayton 478234 |2,88818

Frank | 2,86354 |2,75174

Gumbel | 4,14803 |1,35069

Cap.

Clayton
Goods y 476407 |1.43428

Frank | 1,96202 |1,33945

We can see that for all four time series, in which the residuals are already
independent for k = 2, the best copula is from the Frank class. In contrast, for time
series in which the residuals are independent only for large values of lag k, the
best copula is from the Gumbel class.

f) The Values of Information Criterion AIC

In the last section we can see in the table changes of AIC when we approach to

independence.
Table 7
The table of changes of AIC when we aproach to the independence

Gumbel | -1,50845 2 1,74197 |-20,5521 | 1,40842 | 1,74197 2 1,74197

Egl\;;llgy Clayton 149185 | 45722 | 1,5358 [-14,79512.26746 | 1,5358 |1,91957| 1,5358
Frank |-0,170686| -7,91672 | 1,81884 |-21,1443 | 1,56084 | 1,81884 |1,99995 | 1,81884
Gumbel | -100,192 | -57,3995 |-34,8711|-27,9567 | -23,0306 | 27,1413 | 1,74197 | -17,2749
Unen.l‘;loy Clayton | -80,2784 | -42,4846 |-24,7772|-14,8982 |-7,58769 |-7,79587 | 1,5358 | -8,37347
0OCIS
Frank | -97,7153 | -56,2998 |-35,3158 | -28,2783 | -22,3284 | -26,8159 | 1,81884 | -17,0593
G Gumbel 2 2 2 15,1784 2
. VA Clayton | 3.56993 | 5221 |3.18131 (16,3222 3.36876
industry
Frank | 0461541 | -5,53732 | 1,3366 |-17,7225| 1,28324
Gumbel | -6,50767 |-0,487722
.SVIF Clayton | -7,726 | 2,00002
inflation

Frank | -8,30962 | 1,19782
Gumbel 2 2

GDP SVK | Clayton = 3.40186 | 2,00121
Frank | 0,021092 |-0,586261
Gumbel 2 0,435091
NofB10  Clayton 3.24797 | 1,9097
Frank | -1,58858 | 1,45354
Gumbel 2 1,77872
Clayton | 8.28015 | 3.19424

Cap.
Goods

Frank @ -13,062 | 1,64807
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From the table in this section we can see changes in the AIC values when we
approach to independence. The smallest value of AIC (from our 3 families of
copulas) means the best description of residuals. We see that in most cases the
value of AIC confirms the findings of the value of L2 norms.

Conclusions

The topics of this paper were motivated by the modelling of a large number of
economic and financial time series from emerging Central-European economies
with the SETAR model (see [1], [5]).

We have based the selection of the models (optimizing the number of states and
the order of the local autoregressive models) on the BIC criterion.

Recall that the residuals of these models are supposed to be independent (not only
serially non-correlated). This property can be tested by e.g. the BDS test ([2]).

The BDS test has showed residual dependence (for o = 0.05) in 9 cases (from 20)
for the lag k£ = 1. We increase the lag k of residuals while they are independent. In
the case of the time series ‘CZK’ and ’GDP HUF’ the independence is reached
only for k =23 (CZK) and k = 18 (GDP HUF), so for these time series the SETAR
model is not appropriate.

Inspired by the approach of Rakonczai (2009) [10] we applied autocopulas to the
time series of the above-mentioned residuals in order to gauge how much they
violate the assumptions of independence. We have arrived at an interesting
conclusion concerning the residuals of the models that were selected as optimal on
the basis of the BIC criterion. We have observed that the autocopulas for the
residuals of the optimal models have been mostly substantially closer to the
(independence indicating) product form (especially for lags k > 2) than those for
competing non-optimal models.

For all four time series, in which the residuals are already independent for k = 2,
the best copula is from the Frank class. In contrast, for time series in which the
residuals are independent only for large values of lag k, the best copula is from the
Gumbel class.

In further research we would like to describe our time series with non-
Archimedean copulas such as Gauss, Student copulas, etc. We would also like to
use more complicated multi-regime models — for example the STAR and MSW
models.

In this work we modeled residuals with bivariate copulas for couples (ét»ét—k),
but we aim to model them with multivariate copulas for random vectors

(ét’ét—ls”'aét—k).
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