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Abstract: An alternative approach to testing linearity against Markov-switching type non-
linearity is proposed. The main problem of the classical testing via the likelihood ratio test 
is that the test statistic does not have a standard distribution. Therefore, time-consuming 
simulations must be carried out. Instead of the classical test we suggest using Hamilton’s 
dynamic specification test for the validity of Markov assumptions. We show that this new 
approach provides much faster calculations. With the same idea we calculate the test for 
remaining non-linearity to compare 2-regime with 3-regime models. We compare these two 
approaches with 100 selected real time series from economy and finance. 
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1 Introduction 

Markov-switching models have achieved a great expansion in non-linear time 
series modeling because of their great descriptive properties. The idea is that 
model parameters can acquire different values. This depends on the “regime” or 
“state” the model is in. The parameter switching follows the dynamic behavior of 
economic and financial time series quite well. For instance, one regime can 
express an expansion and the second one a recession. Regime changes are caused 
by dramatic, occasional and rare events like wars, political instability, financial 
crises and so on. Such discrete shifts in parameters can cause changes in the 
expected value, the variance or coefficients of the model. 

In 1993, Granger [1] described a procedure which should be kept in case of a non-
linear modeling. We accept the principle from the specific to the more common. 
So we start with a simpler linear model and then after maintaining given 
conditions we go to more complex non-linear models. Here are the steps for such 
modeling: 
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1 Choose an appropriate linear model AR(q) for the examined time series, 

2 test the null hypothesis about model linearity against non-linearity (if the null 
hypothesis is rejected then we continue to the next step), 

3 estimate the parameters of chosen non-linear model, 

4 check the appropriateness of the chosen non-linear model by diagnostic tests, 

5 modify the model if necessary and 

6 use the model for the description and prediction of the time series. 

In the following sections I briefly summarize the basis of Markov-switching 
models and the classical testing linearity against Markov-switching type non-
linearity via simulations. Then I introduce the main ideas about the proposed 
testing, which is suggested as a faster alternative to the old one. In the end I 
present my results in comparing both approaches. 

2 Markov-Switching Models 

Markov-switching models (MSW models) belong to regime-switching models 
whose regime is determined by an unobservable variable. This means that we 
cannot determine in which regime the process is exactly but only with some 
probability. 

Suppose that the regime occurring in time t is described by a random variable ts  
and if we distinguish N possible regimes, the random variable ts  can attain values 
from the set },...,2,1{ N . We can define the stochastic process }{ ts , which is a 
sequence of random variables . In 1989, Hamilton [2] proposed to specify this 
stochastic process as a first-order Markov process. This means that the process has 
to satisfy this property: 

.)|(,...),|( 121 ijttttt pisjsPksisjsP ======= −−−  (1) 

Thus, the regime in time t depends only on the previous regime in time t-1. Such a 
described process is called an N-state Markov chain and Njiijp ,...,2,1,}{ =  are called 

transitional probabilities. They represent the probability of change that the process 
in the regime i in time t-1 is followed by the regime j in time t. Therefore, it holds 
that 

1...21 =+++ iNii ppp     for .,...,2,1 Ni =  (2) 

In this paper we suppose the following MSW model form: 
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It is described by the AR(q) model in particular regimes, where ty  is the tht  
observation, q is a model order ( },...,,max{ 21 Nqqqq = ), T is the length of time 

series and tε  is the i.i.d. white noise distributed with ),0( 2
εσN . 

In this case the MSW model density of ty  conditional on the random variable ts  
and the history of observations has the follow-up form 
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where ),...,,( ,,1,0 ′= jqjj φφφϕ j  is a vector of AR coefficients for regime j, 

),...,,1( 1 ′= −− qtt yytx  and ),...,,( 1211 yyy ttt −−− =Ω  is the history of observations. 

3 The Classical Approach to Testing 

As we mentioned in the introduction, one of the steps we should follow is testing 
linearity against the Markov-switching type non-linearity. Simply, we examine the 
suitability of a non-linear model instead of a linear model. The classical approach 
to such testing is the likelihood ratio test with a null hypothesis 210 : ϕϕ =H  
against its alternative 2,1,1 : iiH φφ ≠  for at least one },...,2,1,0{ qi∈ , where 

),....,,( ,,1,0 ′= iqiii φφφϕ  is a vector of AR coefficients for the thi  regime (i=1,2). 

The null hypothesis represents the linear model against the alternative hypothesis 
of the 2-regime MSW non-linear model. The likelihood ratio test statistic has the 
following form 

,ARMSW LLLR −=  (5) 

where MSWL  and ARL  are logarithms of likelihood functions, the first one for the 
suitable 2-regime MSW model and the second one for the best AR model. 

One serious problem arises now: the problem of nuisance parameters. We should 
realize that in the case of the linear model we estimate a lower amount of 
parameters than in the case of the MSW model, where we have added transitional 
probabilities ijp  to the parameter vector. Hansen [6] proved in 1992 that this test 

statistic (5) has a non-standard probabilistic distribution. Such a distribution 
cannot be expressed analytically and for calculating critical values we need to 
carry out a simulation. The simulation is an experiment which consists of 
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generating a large number (at least 5000) of artificial time series *
ty  according to 

the model representing the null hypothesis. The next step is to estimate the 
parameters of the best AR model and MSW model for each generated time series 
and to calculate the corresponding likelihood ratio statistic (5). Thus, we get 
critical values and then we are able to do the testing. It is necessary to do the 
simulation for each time series and each model order q distinctively. 

The big disadvantage of this approach is the computation time. It takes “hours” to 
calculate a single simulation. Of course the computation time depends on the 
computer performance or the length of the time series. In the last section, using 
real data I show the difference between the computation times, comparing both 
approaches to testing. 

Instead of such a time consuming test, we propose using the Newey-Tauchen-
White test [7, 10, 11], the score function and the specification test for the validity 
of Markov assumptions, which was proposed in Hamilton [4]. We describe the 
new testing in the next section. 

4 A New Approach to Testing Linearity 

For this new approach we need a score function, the White test [11] for serial 
correlation, which uses conditional moment tests proposed by Newey [7] and 
Tauchen [10] and the dynamic specification test proposed by Hamilton [4]. 

4.1 Score Function 

The score function for the tht  observation is defined as the vector of partial 
derivations of the logarithm of the conditional likelihood function with respect to 
the parameter vector θ  

,),|(log)( 1

θ
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θ
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≡ −ttyf

th  (6) 

where ty  is the tht  observation and ),...,,( 1211 yyy ttt −−− =Ω  is a history of 
observations. We have to calculate the score for the whole length T of the time 
series. 

Hamilton in [4] derived the score function for such a described MSW model. The 
score function has the form 
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for t=1 and 
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for t=2,3,…,T where the parameter vector consists of these elements - ),( pαθ = . 
The vector α  includes AR coefficients for all regimes and model residual 
dispersion, which is ),,...,,( 2

21 εσϕϕϕα N′′′= . The vector p is a vector of 
transitional probabilities ijp  with omitting redundant parameters, which we are 

able to express by others as follows 

.,...,1,....1 1,21 Nipppp NiiiiN =−−−−= −  

Elements of the score function derived with respect to transitional probabilities 
have the form 
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for TtNjNi ,...,2,,...,2,1,,...,2,1 ===  and 
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for t=1. The calculation procedure and more details can be found in Hamilton [4]. 

4.2 The White Test and the Dynamic Specification Test 

As mentioned above, White proposed a test for serial correlation by using 
conditional moment tests from Newey and Tauchen. For the construction of this 
test we need )1( ×l  vector )(ct θ̂ , which is just a representative of examined 

properties from an outer product of the tht  score function and one-lagged, that is 
tht )1( − , score function - ])ˆ()].[ˆ([ 1 ′− θθ tt hh . This test is based on an assumption 

that if data are really generated from distribution ),|( 01 θ−Ωttyf , where 0θ  is the 
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vector of true parameters, then the follow-up equation 0)|)(( 10 =Ω −tE θth  must 
be satisfied. This means that if the model is correctly specified, the score function 

)( 0θth  cannot be predicted on the basis of its lagged values available at time t-1. 
So we try to confirm the independence of the score functions in time t and t-1. 

The test statistic has a )(2 lχ  asymptotic distribution in such a case and the 
following form 
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Hamilton in [4] used this testing for MSW models, where he derived 
autocorrelation tests inside and along regimes, ARCH effects test and the last one 
we are focusing on, the test for the validity of Markov assumptions. They have the 
form 

NjiyisjsPisjsP ttttt ,...,1,),|()|( 111 ====== −−−  (10) 

.,...,1,,),|()|( 211 NkjiksisjsPisjsP ttttt ======= −−−  (11) 

The first assumption means that transitional probabilities would not be dependent 
on the observable variable and the second one represents simply the first-order 
Markov property (1). 

In the vector )(ct θ̂  we must include the elements corresponding to the above 
mentioned examined assumptions 

,,...,1,)ˆ;|(ln)ˆ;|(ln

,0

211 Njiyf
p

yf

i

tt

ij

tt =
∂

Ω∂
⋅

∂
Ω∂ −−−

φ
θθ  (12) 

.,...,1,)ˆ;|(ln)ˆ;|(ln 211 Nji
p

yf
p

yf

ij

tt

ij

tt =
∂

Ω∂
⋅

∂
Ω∂ −−− θθ  (13) 

The vector )(ct θ̂  contains 2N(N-1) elements (after omitting redundant 
parameters), where N is the number of regimes, and then the test statistic has a 

))1(2(2 −NNχ  asymptotic distribution. More details can be found in Hamilton 
[4]. 

4.3 Application 

Firstly we apply this approach to testing linearity against Markov-switching type 
non-linearity and then we use the same idea for testing remaining non-linearity, 
where we compare a 2-regime model against a 3-regime model. We are trying to 
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find out if two regimes are enough for description, or if it is necessary to add 
another one. 

4.3.1 Testing Linearity against Markov-Switching Type Non-Linearity 

A null hypothesis is represented by the validity of Markov assumptions in this 
case. If a 2-regime model does not confirm the examined assumptions (10) and 
(11), we reject the null hypothesis. This means that a linear model would be better 
because this time series does not show Markov-switching type non-linearity. 

Firstly, we must calculate the test statistic (9) for the 2-regime model and find out 
its p-value from )4(2χ  distribution. If the p-value is less than the given 
significance level α, the null hypothesis will be rejected and we will conclude that 
for this time series it is better to use a linear model. 

4.3.2 Testing Remaining Non-Linearity 

We use the same principle for testing remaining non-linearity. So if the previous 
testing linearity does not reject the null hypothesis, we can continue and test for 
remaining non-linearity by comparing a 2-regime with a 3-regime model. We 
examine the appropriateness of a 2-regime model against an alternative hypothesis 
about a 3-regime model. 

After calculating the test statistic (9) for the 3-regime model and corresponding   
p-values from )12(2χ  distribution (for the 2-regime model this is already 
calculated), we compare these p-values with the given significance level α. The 
following alternatives can occur: 

• Non-rejecting the null hypothesis for a 2-regime model, rejecting null 
hypothesis for a 3-regime model. This means that the 2-regime model is 
appropriate. 

• Non-rejecting the null hypothesis for a 2-regime model, non-rejecting the 
null hypothesis for a 3-regime model. The model with a greater p-value 
from testing the validity of Markov properties is the appropriate model. 
In this case we can check these results with other criterions such as the 
BIC (Bayesian Information Criterion) values for both types of models 
(the better model has a lower BIC value), residual dispersion, forecasting 
error values, results for testing autocorrelation, and so on. 
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5 Comparing the New Testing with Classical 
Simulation 

To support our theory of new testing we calculate the classical test via simulation 
as is described in Section 3. We chose 100 time series from the financial and 
economic sectors. 

The biggest advantage of the new testing procedure is the much shorter 
computation time. For instance see Table 1. We needed only 68.5s for the model 
order q = 5 (the length of the time series was 130) with the new approach testing 
linearity. On the other hand the simulation was computed in 14 802.7s for the 
same time series and the model order. For the alternative test of remaining non-
linearity we needed 1 031.69s (the same time series) and the simulation 
experiment took 53 372 s. To understand better why the simulation takes so long, 
the reader is recommended to return back to Section 3, where the simulation 
experiment is described in detail. 

Table 1 
Comparing of computation time in both approaches 

Computation time [s] 
T=130, q=5 

Testing linearity Remaining non-linearity 

Simulation 14 802.7 53 372 

New approach 68.5 1 031.69 

The main results are that the same conclusions are reached by both approaches. 
This means that an appropriateness of the linear model or non-linear model 
occurred in 72% of all cases. In the testing of remaining non-linearity we obtained 
the same conclusions in 79% of all cases. As an example of the test evaluation we 
present the results of the testing for the Russian rouble to Euro exchange rate time 
series in Table 2. 

Table 2 
Results of testing linearity and testing remaining non-linearity by both approaches for Rouble/EUR 

exchange rate 

p-value for Testing linearity  Testing remaining non-linearity 
Rouble New approach Simulation New approach Simulation 
q=1 <0.001 0.981   
q=2 0.1657 <0.001 <0.001 0.97 
q=3 0.1979 <0.001 0.065 0.048 

We can see that for q=1, linearity was claimed for the examined time series by 
both approaches. So we do not test remaining non-linearity any further. For q=2 
and q=3 the linear hypothesis was rejected. Then we continued with testing and 
the results were that for q=2, the Markov assumptions were not confirmed. The 
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simulation also confirmed the sufficiency of the 2-regime model. In the case of 
q=3, we can see that the validity of the Markov assumptions was confirmed in 
both cases. We take the model with the higher p-value, but we should also support 
it with other criterions as we mentioned in the last part of Section 4. 

Conclusions 

Our main goal for proposing a new approach of testing linearity against Markov-
switching type non-linearity was to reduce the computation time because it was 
very demanding to calculate it by simulation, particularly if more than one time 
series analysis was carried out. 

Even though we cannot claim that both approaches are exactly the same tests or at 
least always substitutable, the new one could be very helpful in avoiding all 
simulations. 

There are still some open problems. After these results we would like to follow up 
and calculate the power properties of both approaches and compare them with 
other types of non-linearity tests from [8]. Other interesting ideas for further 
research would be to investigate efficiency and to discover how the method works 
if the theoretical model is known. Next we should test the residuals and their 
independence, because correlation on its own is not sufficient. We could get 
linearly uncorrelated residuals but they can be dependent. Another issue was 
mentioned by Pál Rákonczai in 2008 [9], who suggested using auto-copulas 
instead of the autocorrelation function because the autocorrelation function 
describes only linear dependence and we need to describe non-linear dependence. 

Acknowledgement 

The support of the grant APVV No. LPP-0111-09 is announced. 

References 

[1] Granger, C. W. J.: Strategies for Modelling Nonlinear Time-Series 
Relationships. The Economic Record, No. 69, 1993, pp. 233-238 

[2] Hamilton, J. D.: A New Approach to the Economic Analysis of 
Nonstationary Time Series and the Business Cycle, Econometrica, No. 57, 
1989, pp. 357-384 

[3] Hamilton, J. D.: Analysis of Time Series Subject to Changes in Regime, 
Journal of Econometrics, No. 45, 1990, pp. 39-70 

[4] Hamilton, J. D.: Specification Testing in Markov-Switching Time Series 
Models, Journal of Econometrics, No. 70, 1996, pp. 127-157 

[5] Hamilton, J. D.: Time Series Analysis, Princeton University Press, 1994. p. 
820 



J. Lenčuchová Testing of Markov Assumptions Based on the Dynamic Specification Test 

 – 36 – 

[6] Hansen, B. E.: The Likelihood Ratio Test under Nonstandard Assumptions: 
Testing the Markov Switching Model of GNP, Journal of Applied 
Econometrics, No. 7, 1992, pp. 61-82 

[7] Newey, W. K.: Maximum Likelihood Specification Testing and 
Conditional Moment Tests, Econometrica, No. 53, 1985, pp. 1047-1070 

[8] Psaradakis, Z., Spagnolo, N.: Power Properties of Nonlinerity Tests for 
Time Series with Markov Regimes, Studies in Nonlinear Dynamics & 
Econometrics, No. 6, Issue 3, Article 2, 2002 

[9] Rakonczai, P., Márkus, L., Zempléni, A.: Goodness of Fit for Auto-Copulas 
in Testing the Adequacy of Time Series Models, in Proceedings of 
COMPSTAT 2008: International Conference on Computational Statistics -
Contributed Papers, Porto, Portugal, 2008 

[10] Tauchen, G.: Diagnostic Testing and Evaluation of Maximum Likelihood 
Models, Journal of Econometrics, No. 30, 1985, pp. 415-443 

[11] White, H.: Specification Testing in Dynamic Models. In Truman F. 
Bewley, editors, Advances in Econometrics, 5th World Congress, Vol. 2, 
Cambridge: Cambridge University Press, 1987 


