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Abstract: A combining adaptive fuzzy-wavelet control algorithm is proposed for a class of 
continuous time unknown nonlinear systems. An application of wavelet networks to control 
problems of nonlinear systems is investigated in this work. A wavelet network is 
constructed as an alternative to a neural network to approximate a nonlinear system. Based 
on this wavelet network and fuzzy approximation, suitable adaptive control laws and 
appropriate parameter update algorithms for nonlinear uncertain (or unknown) systems 
are developed to achieve tracking performance. The stability analysis for the proposed 
control algorithm is provided. A nonlinear system simulation example is presented to verify 
the effectiveness of the proposed method. 
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1 Introduction 

In recent years, wavelet neural networks which combine the learning ability of 
feed forward neural networks and time-frequency localization properties of 
wavelets have become a popular tool for multiscale analysis and synthesis, time-
frequency signal analysis in signal processing, function approximation, 
approximation in solving partial differential equations, and so on [1]-[8]. 

At present, there are two kinds of wavelet neural network structures. The first one 
is the fixed wavelet basis, where the dilation and translation parameters of wavelet 
basis are fixed, and the output layer weights are adjustable. The second one is the 
variable wavelet basis. The dilation parameters, translation parameters, and the 
output layer weights are adjustable in this type of wavelet neural network. 

On the other hand, considerable study has been performed to integrate the 
excellent learning capability of neural networks with the perfect inference 
mechanism of fuzzy systems, which are called neuro-fuzzy systems [9], to obtain 
the rule-base membership function parameters from the input-output data. These 
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neuro-fuzzy systems have fast and accurate learning and good generalization 
capabilities, and both have the ability to accommodate expert knowledge about the 
problem under consideration. 

Fuzzy logic controllers are generally considered applicable to plants that are 
mathematically poorly understood and where experienced human operators are 
available. However, fuzzy controllers have not been regarded as an exact science 
due to the lack of a guarantee of global stability and acceptable performance. 
Nonetheless, some researchers propose the stability analysis of fuzzy control 
systems (e.g., [10]). The mathematical model of the plant is assumed to be known 
in [10]. Hence, this contradicts the very fundamental premise of fuzzy control 
systems. In fact, if the model of plant is known, then we should give the 
conventional linear or nonlinear control methods high priority. 

The proposed control scheme provides good transient and robust performance. In 
this paper, it is proved that the closed-loop system is globally stable in the 
Lyapunov sense and the system output asymptotically stable with modeling 
uncertainties and disturbances. 

Fuzzy controllers are assumed to work in situations where the plant parameters 
and structures have some uncertainties or unknown variations. The basic objective 
of adaptive control is to maintain the consistent performance of a system in the 
presence of uncertainties. So, advanced fuzzy control or wavelet approximation 
might be adaptive. This work is involved by combining the characteristics of 
wavelet, the technique of feedback linearizations, the adaptive control scheme and 
the fuzzy control to solve the tracking control design problem for nonlinear 
systems with bounded unknown or uncertain parameters and external 
disturbances. 

This paper is organized as follows. First, the problem formulation is presented in 
Section 2. A brief description of a wavelet system is included in Section 3. In 
Section 4, the adaptive fuzzy-wavelet control is proposed. Simulation results for 
the proposed control concept are shown in Section 5. Finally, the paper is 
concluded in Section 6. 

2 Problem Formulation 

Consider an nth order SISO nonlinear system with n 2≥  of the following form 

1 2

n

1

x x

x f (x) g(x)u
y x

=

= +
=

�
#

�
 (1) 
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where (n 1) T T n
1 2 nx [x, x, , x ] [x , x , , x ] R−= = ∈� " "  is the state vector, u is 

the control input and y is the output of the system. All the elements of the state 
vector x  are assumed to be available. At the beginning, f (x)  is assumed to be 

smooth and g(x)  is assumed to be smooth and bounded away from zero. 
Differentiating the output y with respect to time for n times we obtain the 
following input/output form 

(n)y f (x) g(x)u= +  (2) 

Note that the above system has a relative degree of n. 

If f (x)  and g(x)  are known, a nonlinear tracking control can be obtained. Let 

ry  be the desired continuous differentiable uniformly bounded trajectory and let 

(n 1) T n
re y y (e,e, ,e ) R−= − = ∈� "  (3) 

be the tracking error. Then by employing the technique of feedback linearization a 
suitable control law can be derived to achieve the tracking control goal as 

( ) ( ) p
1u f x u

g x
⎡ ⎤= − + + ν⎣ ⎦  (4) 

where pu  is an auxiliary control variable yet to be specified and 

( ) ( ) ( )( ) ( )n n 1 n 1
r 1 r n ry y y y y− −ν = +α − + +α −"  (5) 

Note that the coefficients 1 n, ,α α…  are positive constants to be assigned such 

that the polynomial n n 1
1 ns s −+ α + +α…  is Hurwitz. As a result, the error 

dynamic of the system has the following input/output form 

( ) ( )n n 1
1 n pe e e u−+ α + +α =…  (6) 

which can be represented in state space form as 

pe e uA B= +�  (7) 

where 
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n n 1 n 2 1

0 1 0 0
0 0 1 0

0 0 0 1

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−α −α −α −α⎣ ⎦

A

"
"

# # # % #
"
"

 (8) 

[ ]T0 0 1B = "  (9) 

( ) ( ) Tn 2 n 1e e e e− −⎡ ⎤= ⎣ ⎦"  (10) 

Note that the above design method is useful only if ( )f x  and ( )g x  are known 

exactly. If ( )f x  and ( )g x  are unknown then adaptive strategies must be 

employed. Let us now discuss a wavelet-network based adaptive algorithm. 

First we employ two wavelet networks 

( ) ( )T T
f f fff x, W c xθ = θ

�
 (11) 

( ) ( )T T
g g ggg x, W c xθ = θ�

 (12) 

to approximate (or model) the nonlinear functions ( )f x  and ( )g x  of the 

system, respectively. 

3 A Review of Wavelet Networks 

In this section a brief introduction to wavelet networks is given. Several kinds of 
wavelet bases have successfully been developed and widely applied in many 
different areas, such as in time-frequency signal analysis in signal processing, 
function approximation, approximation in solving partial differential equations 
and so on. Further development of new families of wavelet bases continues to 
receive considerable attention from researchers. 

Consider the closed space iU , i Z∀ ∈  with the following properties [11] 

iU  1 0 1U U U−⊂ ⊂ ⊂" "  (13) 
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{ }i Z iU 0∈∩ =  (14) 

i 1 i iU U W+ = ⊕  i Z∀ ∈  (15) 

( ) ( )i i 1f x U f 2x U +∈ ⇔ ∈  i Z∀ ∈  (16) 

where Z is the set of all integers, ∩  is the intersection operator and ⊕  is the 
direct sum. It is seen that the decomposition of the whole space S can be rewritten 
as follows 

i i i 1 0 1S U W W W W+= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕" "  (17) 

for some i Z∈ . Let ( )x Sφ ∈  be a basic scaling function such that 

( ){ }i ijU span x= φ  with ( ) ( )
i

i2
ij x 2 2 x jφ = φ − , for all i, j Z∈ ; then, there 

exists a basic function ( )x Sψ ∈  such that ( ){ }i ijW span x= ψ  with 

( ) ( )
i

i2
ij x 2 2 x jψ = ψ − , for all i, j Z∈ . 

Now, consider a function ( )f x  is S. It is obvious that ( )f x  can be rewritten as 

[11], [12] 

( ) ( )ij ij
i j

f x x= θ ψ∑∑  (18) 

where 

( ) ( )∫
∞

∞−

ψ=θ dxxxf ijij  (19) 

with ( ) ( )
i

i2
ij x 2 2 x jψ = ψ − , for all i, j Z∈ . The above expression of ( )f x  

is called a wavelet series expansion of the function ( )f x . 

Based on the wavelet series expansion, a wavelet network of the form [13], [14] 

( ) ( ) ( )
2 2

1 1

M N
T

ij ij
i M j N

f x, x W x
= =

θ = θ ψ = θ∑ ∑
�

 (20) 
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can be constructed to approximate a nonlinear function ( )f x  in space S, for 

some integers 1M , 2M , 1N  and 2N  where 

1 1 1 2 2 1 2 2

T

M N M N M N M N⎡ ⎤θ = θ θ θ θ⎣ ⎦" " "  (21) 

and 

( ) ( ) ( ) ( ) ( )[ ]TNMNMNMNM xxxxxW
22122111

ψψψψ= ………  (22) 

This wavelet network represents an alternative to a neural network approximation. 

If ( ) ( ) ( )1 2 1 2є M ,M , N , N f x f x,= − θ
�

 is the approximation error, then for 

arbitrary constant 0ε ≥  there exist some constants 1 2 1 2M ,M , N , N Z∈  such 

that ( )1 2 1 2 2
є M , M , N , N ≤ ε , for all c in compact set X R⊂ . This means 

that the wavelet network ( )f x,θ
�

 can approximate ( )f x  to any desired 

accuracy. 

In the case of a function ( )f x  defined on nX R⊂  with T
1 2 nx [x , x , , x ]= " , 

the proposed wavelet network ( )f x,θ
�

 cannot be applied directly because 

( )f x,θ
�

 is defined on X R⊂ , not on nX R⊂ . We must first make a minor 

modification by replacing the wavelet bases in Eq. (20) by 

( )
n

T
ij ij i i

i 1

c , x c x
=

⎛ ⎞ψ = ψ ⎜ ⎟
⎝ ⎠
∑  with some weighting constants ic . 

Then the modified wavelet network becomes 

( ) ( ) ( )
2 2

1 1

M N
T T T

ij ij
i M j N

f x, c x W c x
= =

θ = θ ψ = θ∑ ∑
�

 (23) 

Note that this modified wavelet network is composed of four layers. The first layer 
is the input layer with available input vector T

1 2 nx [x , x , , x ]= " . A weighting 

summer Tc x  is given in the second layer. The third layer is composed of the 
wavelet bases. The output layer is a weighted combination of the wavelets. 
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4 Adaptive Fuzzy/Wavelet Control 

According to the description in Section 3, guaranteeing x  in a compact region is 

very important when the wavelet networks ( )ff x,θ
�

 and ( )gg x,θ�
 are used to 

approximate ( )f x  and ( )g x , respectively. In general there is still not an 

efficient way to ensure satisfaction of this requirement. In practical applications 
one may assign a very large compact set to avoid violation of this requirement. 
However, a very large wavelet basis is needed in this situation. This may result in 
a large computational burden. Fortunately, in many physical systems such as 
mechanical systems and electrical systems, an appropriate selection of the pre-
assigned compact set can be obtained via knowledge of some physical limitations. 

Let 

( ) ( )
f

*
f fx

arg min max f x, f x
θ

θ = θ −
�

 (24) 

( ) ( )
g

*
g gx

arg min max g x, g x
θ

θ = θ −�  (25) 

be the best approximation parameters of fθ  and gθ , respectively. 

System (1) can be rewritten as 

( ) ( ) ( )n
1 1 n 1 nx f x , , x g x , , x u= +… …  (26) 

where (n 1) T T n
1 2 nx [x, x, , x ] [x , x , , x ] R−= = ∈� " "  is the state vector and 

the functions ( )f x  and ( )g x  are unknown nonlinear functions of the states and 

time. The objective of the adaptive wavelet error tracking control design is to 
update the controller parameters in such as a way that the system output can 
asymptotically track the desired reference model output ( )r my x t=  in spite of 

function uncertainties. 

The reference model is a linear system in form 

( ) ( )
1 1 1 1

n n 1
m n 1 m 1 m 0 mx a x a x a x br−

−+ + + + =�"  (27) 

where 
1 1 1 1 2 n

(n 1) T T n
m m m m m m mx [x , x , , x ] [x , x , , x ] R−= = ∈� " "  is the state 

vector of the reference model. 

To follow the reference model, the controller must be chosen so as to cancel the 
nonlinearities in the nonlinear system and provide pole placement to the system, 
i.e. feedback linearization. For example, the controller is chosen in the form 
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( ) ( ) ( )n 1
n 1 1 1 1 0 1

1u f x a x a x a x br
g x

−
−

⎡ ⎤= − − − − − + ⎦⎣
� �� � ��"�  (28) 

In this article the set of fuzzy systems is used with a singleton fuzzifier, product 
inference, a centroid defuzzifier, a triangular antecendent membership function 
and a singleton consequent membership function with n inputs of 

[ ]
iiii xxxxi kc,kcx +−∈  for n,,1i …=  and [ ]1,0u∈  as the normalized 

output. The generalized expression of the class of the fuzzy controllers can be 
written as 

∑ ∑
= =

−−=
2

1i

2

1i

1i
n

1i
1ii

1 n

n1

n1
xxNu "" "  (29) 

∏

∑ ∑

=

= =
⎥
⎦

⎤
⎢
⎣

⎡

= n

1i
x

n

2

1j

2

1j
jjjjjj

ii

i

1 n

n1n1n1

n1

k2

CKR
N

"""

"

"
 (30) 

( )
( )

( )
( )

1i

x
j

x

j
1i

x
j

x

j

jj

1

n

n

n

n
1

1

1

1

1

n1 c1k
1

c1k
1C

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

= ""  (31) 

( )[ ] ( )[ ]
n

n

n1

1

1n1 x
j

xx
j

xjj c1kc1kK −−−−= ""  (32) 

On the other hand, given the coefficients of the explicit form 
n1 iiN "  we can 

reconstruct the rule base from the generalized expression of the class of fuzzy 
systems [15] by using the following theorem. 

Theorem 1 [15]: For a class of fuzzy logic systems (FLS) with a singleton 
fuzzifier, product inference, a centroid defuzzifier, a triangular antecendent 
membership function and a singleton consequent membership function, i.e. given 
the coefficients of the explicit form, i.e. 

n1 iiN " , the control function can be 

expressed in terms of fuzzy rules as 

∑ ∑
= =

=
2

1i

2

1i
jjiijj

1 n

n1n1n1
DNR """ "  (33) 

with 

( ) ( )1 n
1 n

1 n 1 1 n n

i 1 i 1j j
j j x x x xD c 1 k c 1 k

− −
⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦" "  (34) 
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Proof: The proof is found by directly expanding terms and comparing 
coefficients. For details, please refer to [15]. 

Therefore, one can express an equation in the form of generalized multilinear 
equations, such as polynomials, exactly as a rule base of FLS. Theorem 1 is useful 
in cases where the implementation of an FLS performs inference on a given fuzzy 
rule base but without any numerical computation capability. 

We can express the fuzzy controller in the form of fuzzy IF-THEN rules. 

RULE i: IF r is r
1A  and ... and nx  is nx

1A , THEN ip Ru =  

The generalized expression of the class of fuzzy controller with n+1 inputs, i.e. r 
and x  can be written as 

0 1 n

0 1 n

0 n

2 2
i 1 i 1 i 1

p i i i 1 n
i 1 i 1

u N r x x− − −

= =

= ∑ ∑ "" "  (35) 

By applying Theorem 1, one can find a set of iR 's  to represent exactly the given 

pole-placement equation as ( )n 1
p n 1 1 1 1 0 1u a x a x a x br−

−= − − − − +
�� � ��" . 

The controller for pole-placement can be written as 
T
p ppu = θ ω  (36) 

with ( )T T T
b cp 0k , k , kθ =  

and ( )T T T
cp r, x , xω =  

with 

0 211 111k 2N= …  

1 121 111k 2N= …  

n 1 111 121k 2N− = …  

n 111 112k 2N= …  

where [ ]Tb 1 nk k , , k= " . The composite state vector cx  and the associated 

parameter vector ck  are defined as 

( )T
c 1 2 n 1 2 n 1 n 1 nx rx x x , rx x x , , x x ,1− −= … … "  (37) 
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( )c c

T
c n 1 n 2 n n 1 n nk k ,k , , k , k+ + + − += "  (38) 

with 

n 1 222 222k 2N+ = …  

n 2 222 221k 2N+ = …  

cn n 1 111 122k 2N+ − = …  

cn n 111 111k 2N+ = …  

where ( )n 1
cn 2 n 1+= − +  

Controller can be stated as 

( ) ( )p
1u u f x

g x
⎡ ⎤= −⎣ ⎦

�
�  (39) 

From the nonlinear system (26) we have 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

n
1x f x g x u

f x g x u g x u g x u

f x g x u g x g x u

= +

= + − +

= + + −

� �

� �
 (40) 

By substituting (39) into the previous equation it becomes 

( ) ( ) ( )( ) ( ) ( )( )T Tn
b c1 0x k x k r k f x f x g x g x u= + + + − + −

� �
 (41) 

By substracting the closed-loop plant dynamic equation (above) with the reference 
model dynamic (27) we have the following 
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( ) ( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( )

( ) ( )

( )
( ) ( )( ) ( ) ( )( )

1

1

1

T Tn n
b c c1 m 0

n 1
j

j m
j 1

n 1
j j

j 1 m
j 1

n 1
j

j j 1
j 1

T
c c0

x x k x k r k x

ˆ ˆf x f x g x g x u

a x br

a x x

k a x

k b r k x

ˆ ˆf x f x g x g x u

−

=

−

=

−

=

− = + +

+ − + −

+ −

⎡ ⎤= − −⎣ ⎦

⎡ ⎤+ +⎣ ⎦

+ − +

+ − + −

∑

∑

∑

 (42) 

For the time derivative of the signal error vector me x x= −  the following 
equality holds 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

n 1 n 1
n j j

1 j 1 j j 1
j 1 j 1

T
c c0

e a e k a x

ˆk b r k x f x f x

ˆg x g x u

− −

= =

⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦

+ − + + −

+ −

∑ ∑

 (43) 

We can rewrite the error (43) in matrix representation 
T

Ime e b= + φ ωA�  (44) 

The error vector e  is defined as 

( ) ( ) ( )

1

1

1

m1 1

m1 1

n 1 n 1 n 1
1 1 m

xe x
xe x

e

e x x− − −

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= = − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�� �
# # #

 (45) 

The matrix mA  and vector Ib  are defined as 



M. Kratmüller Combining Fuzzy/Wavelet Adaptive Error Tracking Control Design 

 – 126 – 

m

1 2 3 n

0 1 0 0
0 0 1 0

a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
− − − −⎝ ⎠

A

"
"

# # # % #
"

 (46) 

I

0

b
0
1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

#
 (47) 

with the parameter error vector φ  defined as 

( ) ( )
c

0 1 1 n n
T

n 1 n 2 n n

T T* *
f f g g

k b k a k a
k k k+ + +

⎧ ⎫
− + +⎪ ⎪

⎪ ⎪φ = ⎨ ⎬
⎪ ⎪
⎪ ⎪θ −θ θ −θ⎩ ⎭

"
"  (48) 

( ) ( )

1 n
T

1 2 n 1 2 n 1

T T
f gf g

r x x
rx x x rx x x 1

W c x W c x
−

⎧ ⎫
⎪ ⎪⎪ ⎪ω = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

"
… … "  (49) 

where ( ) ( )* T
f ffW c x f xθ ≈  and ( ) ( )* T

g ggW c x g xθ ≈ . The system’s error 

(44) consists of a linear part governed by mA  and Ib  plus a nonlinear control 
Tφ ω . In the following we show stable adaptive laws for the system. 

Theorem 2: Consider the error equation given by (43) whose parameters are 
adjusted according to the following adaptive laws. 

1) For the nonlinear-cancellation for ( )f x  the adaptive law is 

( ) ( )T T
f ffp e W c xθ = −γ�  

2) For the nonlinear-cancellation for ( )g x  the adaptive law is 

( ) ( )T T
g ggp e W c xθ = −γ�  
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Then we have 

1) e  and φ  are uniformly bounded 

2) 
t
lim e 0
→∞

=  

where p  is a vector consisting of the n-th column of positive definite symmetric 

matrix P (see Eq. 45). 

Proof: The choice of the Lyapunov function is normally a quadratic function of 
both the signal error vector e  and the parameter error φ  

T T 1V e e −= + φ φP Γ  (50) 

with the adaptation gain matrix defined as n 1 n 12 2+ +×
= γΓ I , where n 1 n 12 2+ +×

I  is a 
1n1n 22 ++ ×  identity matrix. Since Γ  is positive definite, 1−Γ  is also positive 

definite. Matrix P must be chosen as a positive definite symmetric matrix and it 
will follow from the adaptive law derivation shown in the following. To obtain an 
asymptotically stable adaptive system, V�  must be negative definite. 
Differentiating V yields with 

( )T T T TT 1
Im mV e e 2e b 2 −= + + φ ω+ φ φA P PA P Γ ��  (51) 

By applying the second method of Lyapunov, positive definite symmetric matrices 
P and Q can be found such that the first part of the equation satisfies 

( )T TT
m me e e e+ = −A P PA Q  (52) 

By putting the last two terms of the equation to zero the adaptive laws emerges 

( )

T T T 1
I

T
I

T

2e b 2 0

e b

p e

−φ ω+ φ φ =

φ = − ω

= − ω

P Γ

Γ P

Γ

�

�  (53) 

The product IbP  is a vector consisting of the n-th column p of P, while the model 

and process parameters are assumed constant. From the definition of φ , it follows 

that 

( )Tp e′θ = ωΓ�  (54) 
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with 
pnb

′ =
ΓΓ . By partitioning the parameter vectors, we can obtain the adaptive 

laws for the parameters of the two approximators. Since 0V <�  from (51) we 
obtain that e  and φ  are uniformly bounded. Because of the boudedness of e , φ  

and ω  we see from (43) that e�  is bounded as well. Thus e  is uniformly 

continuous and so is ( )V e,φ� . From the fact that 

T T 1V e eP Γ−= + φ φ  (55) 

TV e eQ= −�  (56) 

we have that 
*

t
VVlim =

∞→
 (57) 

exists, with 

T*
0

0

V V e edtQ
∞

− = −∫  (58) 

Since the left-hand side is known to be finite, we know that the term on the right-
hand side must be finite. We known that since Te eQ  is positive, uniformly 
continuous and has a finite integral that 

T

t
lim e e 0Q
→∞

=  (59) 

and thus 

t
lim e 0
→∞

=  (60) 

Notice that the sign of the actual adaptation gain matrix Γ′  is found to depend on 
the sign of pnb  and so to be able to implement the adaptive law with a proper 

sign, the sign of pnb  must be known. This condition appears in all MRAC 

schemes. The equations form the adaptive laws that provide a stable adaptive 
system. The matrix P and so the vector p  can be calculated with Lyapunov’s 

equation starting with a chosen definite symetric matrix Q. Furthermore, the 

product of vectors ( )T
Ib eP  is called the “compensated error“ in adaptive 

control literature. This adaptive law has the same form as the MIT adaptive laws, 
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which use the error e  instead of the compensated error Tp e . Since it can be 

shown that using the compensated error in the adaptation laws preserves the 
system stability, the word “compensated“ refers to the compensation of the error 
in order to preserve system stability. 

5 Simulation Example 

Example 1 

The above described adaptive fuzzy/wavelet control algorithm will now be 
evaluated using the inverted pendulum system depicted in Fig. 1. 

l 

1x=θ

 
Figure 1 

The inverted pendulum system 

Let θ=1x  and θ= �2x . The dynamic equation of the inverted pendulum is 
given by [16] 
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where g is the acceleration due to gravity, cm  denotes the mass of the cart, m is 

the mass of the pole, l is the half-length of the pole, the force cu  represents the 
control signal and d is the external disturbance. In simulations the following 
parameter values are used: Kg1mc = , Kg1.0m =  and m5.0l = . The 

reference signal is assumed to be ( ) ( ) ( )tsin30/ty r π=  and an external 

disturbance ( ) ( )tsin1.0td = . 

If we require 

6
x π
≤ , 180u ≤  (62) 

and substitute the functions sin(.) and cos(.) by their bounds, we can determine the 
bounds 

( ) 2
221

M x366.078.15x,xf +=  (63) 

( ) 46.1x,xg 21
M = , ( ) 12.1x,xg 21m =  (64) 

2k1 = , 1k 2 =  and ( )10,10diagQ =  are set. Then the algebraic Riccati 

equation solution is ⎥
⎦

⎤
⎢
⎣

⎡
=

55
515

P  and ( ) 93.2Pmin =λ . To satisfy the 

constraint related to x  we choose 16Mf = , 6.1Mg =  and 0.48γ = . Five 

Gaussian membership functions for both 1x  and 2x  (i=1,2) are selected to cover 
the whole universe of discourse 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

π−
−=μ

2
i

iF 24
6x

expx1
i

 (65) 

( )
⎟
⎟

⎠
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⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π−

−=μ
2

i
iF 24

12x
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i
 (66) 
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⎟
⎟

⎠
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i
iF 24

x
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i
 (67) 
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( )
⎟
⎟

⎠

⎞

⎜
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⎝

⎛
⎟⎟
⎠

⎞
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( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

π+
−=μ

2
i

iF 24
6xexpx5

i
 (69) 

Using the method of trial and error 50f =γ  and 1g =γ  are chosen. The 

pendulum initial position is chosen as far as possible ( )( )20x0 1 π==θ  to 
emphasize the efficiency of our algorithm. 

The Haar wavelets are chosen to be the basis of the wavelet network. The vectors 

fc  and gc  are both chosen as T
f gc c c [1 1]= = = , and the size of our 

network is chosen as 1M 2= − , 2M 2= , 1N 1= −  and 2N 1= . In this 

example, the wavelet bases for ( )f x  and ( )g x  are chosen and are the same. 

Therefore, ( ) ( ) ( )T T T
f gf gW c x W c x W c x= = . 

Two cases have been considered in order to show the influence of the linguistic 
rules incorporation into the control law: 

Case one: the initial values of fθ  and gθ  are chosen arbitrarily. 

Case two: the initial values of fθ  and gθ  are deduced from the fuzzy rules 

describing the system dynamic behavior. For example, if we consider the unforced 
system, i.e. 0u c = , the acceleration is equal to ( )21 x,xf . Thus we can state 
intuitively: 

“The bigger is 1x , the larger is ( )21 x,xf ”. 

Transforming this fuzzy information into a fuzzy rule we obtain 
( )1
fR  : IF  1x  is  5

1F  and  2x  is  5
2F , THEN  ( )21 x,xf  is Positive Big 

where “Positive Big” is a fuzzy set whose membership function is ( )iF
xl

i
μ  given 

by (65)-(69). The acceleration is proportional to the gravity, i.e. 
( ) ( )121 xsinx,xf α≅ , where α  is a constant. As ( )21 x,xf  achieves its 

maximum at 2x1 π= , using (63)-(64) we obtain 16≅α . The resulting set of 

25 fuzzy rules characterizing ( )21 x,xf  is given in Tab. 1. 
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Table 1 
Linguistic rules for ( )21 x,xf  

( )21 x,xf  1x  

 1
1F  2

1F  3
1F 4

1F  5
1F  

 
6
π

−  
12
π

−  0 
12
π  

6
π  

 1
2F  

6
π

−  -8 -4 0 4 8 

 2
2F  

12
π

−  -8 -4 0 4 8 

2x  3
2F  0 -8 -4 0 4 8 

 4
2F  

12
π  -8 -4 0 4 8 

 5
2F  

6
π  -8 -4 0 4 8 

Now the following observation is used to determine the fuzzy rules for ( )21 x,xg : 

“The smaller is 1x , the larger is ( )21 x,xg ”. 

Similarly to the case of ( )21 x,xf  and based on the bounds (63)-(64) this 
observation can be quantified into the 25 fuzzy rules summarized in Tab. 2. 

Table 2 
Linguistic rules for ( )21 x,xg  

( )21 x,xg  1x  

 1
1F  2

1F  3
1F  4

1F  5
1F  

 
6
π

−  
12
π

−  0 
12
π  

6
π  

 1
2F  

6
π

−  1.26 1.36 1.46 1.36 1.26 

 2
2F  

12
π

−
1.26 1.36 1.46 1.36 1.26 

2x  3
2F  0 1.26 1.36 1.46 1.36 1.26 

 4
2F  

12
π  1.26 1.36 1.46 1.36 1.26 

 5
2F  

6
π  1.26 1.36 1.46 1.36 1.26 
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To obtain the same tracking performances the attenuation level ρ  is equal to 0.2 
in the first case and to 0.8 in the second one. 

The tracking performance of both cases for a sinusoidal trajectory is illustrated in 
Fig. 2. 

0 5 10 15
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15[rad] 

[s] 

 
Figure 2 

The state 1x  in case 1(red dashed line), in case 2 (green dotted line) and desired value ( )tyr  (blue 

solid line) for ( ) ( )T0,120x π=  

Example 2 

In this example, we apply the adaptive fuzzy/wavelet controller to the system 

0u5.0y7.1y
y25.0

1y ''' =−+
+

+  (70) 

Define six fuzzy sets over interval <-10, 10> with labels N3, N2, N1, P1, P2, P3. 
The membership functions are 

( )
( )25.0x1N

e
1x
+

=μ  (71) 

( )
( )25.1x2N

e
1x
+

=μ  (72) 
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( ) ( )2x53N e1
1x ++

=μ  (73) 

( )
( )25.0x1P

e
1x
−

=μ  (74) 

( )
( )25.1x2P

e
1x
−

=μ  (75) 

( ) ( )2x53P e1
1x −−+

=μ  (76) 

The reference model is assumed to be 

( )
1s2s

1sM 2 ++
=  (77) 

and the reference signal is the square periodic signal of magnitude 1.5 and 
frequency 0.01 Hz. 

We choose ⎥
⎦

⎤
⎢
⎣

⎡
=

2030
3050

P , 2k1 = , 1k 2 = , and ( ) 52.1Pmin =λ . To satisfy 

the constraint related to x  we choose 25.0V = , 20Mf = , 1.2Mg =  and 

0.25γ = . 

At the 200th second of simulation the system (64) was switched to another system 

( )
''' '' '

2
1y 5y 1.7 y y 5u 0

0.25 y

⎡ ⎤
+ + − + − =⎢ ⎥

+⎢ ⎥⎣ ⎦
 (78) 

All initial states have been set to zero ( ) ( ) ( ) ( ) 00y0y0y0y '''''' ==== . 

As can be seen from Fig. 3, the simulation results confirm the good adaptation 
capability of the proposed control system. The system dynamic changes are in 
particular manifested by changes of the control input signal (Fig. 4). 
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Figure 3 

The state 1x (blue dashed line), its desired reference model value ( )tym  (green solid line) and 

reference signal (red solid line) 
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Figure 4 

Control signal 
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Conclusions 

The adaptive control technique has been combined with a wavelet network 
algorithm and a fuzzy approximation method in this study to achieve the desired 
attenuation of disturbance due to the approximation error and external noise in a 
class of nonlinear system under a large uncertainty or unknown variation in plant 
parameter and structure. The major advantage lies in that the accurate 
mathematical model of the system is not required to be known. The proposed 
method can guarantee the global stability of the resulting closed-loop system in 
the sense that all signals involved are uniformly bounded. In addition, the specific 
formula for the bounds is also given. Finally, the indirect adaptive controller has 
been used to control a nonlinear system to the origin. 
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