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We will be focused on the interpolation approach to a computation with fuzzy data. A definition of interpolation of fuzzy
data, which stems from the classical approach, is proposed. We investigate another approach to fuzzy interpolation
(published in [5]) with relaxed interpolation condition. We prove that even if the interpolation condition is relaxed the
related algorithm gives an interpolating fuzzy function which fulfils the interpolation condition in the classical sense.
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1 Introduction
In the following, we will deal with a problem of a fuzzy interpolation. We will first recall a classical
approach to interpolation, because the problem of fuzzy interpolation closely relates to it.

Let f be a real function of a real argument with a domain M = {xi, i = 1, . . . , n} ⊂ R, and
{(xi, f(xi)), i = 1, . . . , n} ⊆ R be the interpolation data. LetM ⊂ P ⊆ R. An interpolation function
g : P −→ R is a function that fulfils the interpolation condition:

f(xi) = g(xi), i = 1, . . . , n.

In this paper, we will be focused on the interpolation approach to a computation with fuzzy data. A
precise definition of interpolation of fuzzy data will be given below in the subsection 2.4. Freely speaking,
this is a problem of extension of a fuzzy function given on a restricted domain to a fuzzy function given on
a wider domain (similar to the case considered above).

There are other approaches to the problem of fuzzy interpolation. They differ one from the other one
by restrictions on interpolation functions. The following list remembers the most popular approaches :
level cuts interpolation [17, 18], analogy-based interpolation [3, 4, 6], interpolation by convex completion
[8, 23], interpolation by geometric transformations [1], interpolation in a family of interpolating relations
[2], polar cut interpolation [15], interpolation based on closeness relations [5], flank functions interpolation
[13, 14], analytic fuzzy relation-based interpolation [20], and fuzzy interpolation based on fuzzy functions
[11].

The sections below are arranged as follows : basic concepts as well as definition of fuzzy interpolation
will be given in Section 2. In Section 3, we will recall the approach to fuzzy interpolation introduced by
Godo, Esteva, ets. in [5]. The last Section 4 is devoted to a new approach.
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2 Fuzzy Interpolation and Its Analytic Representation
In this section, we will introduce the problem of fuzzy interpolation as a problem of extension of a partially
given fuzzy function. Moreover, we expect that a solution will be represented analytically with the help of
a structure known as residuated lattice.

First of all, we will recall the notion of residuated lattice, then we will introduce the notion of fuzzy
space and fuzzy function. Finally, we will discuss a certain class of interpolating fuzzy functions and their
analytical representation.

2.1 Residuated Lattice
A residuated lattice is an ordered algebraic structure with two residuated binary operation. We will recall
its definition from [19].

Definition 1
A residuated lattice∗) is an algebra

L = 〈L,∨,∧, ∗,→,0,1〉.
with a support L and four binary operations and two constants such that

• 〈L,∨,∧,0,1〉 is a lattice where the ordering ≤ defined using operations ∨,∧ as usual, and 0,1 are
the least and the greatest elements, respectively;

• 〈L, ∗,1〉 is a commutative monoid, that is, ∗ is a commutative and associative operation with the
identity a ∗1 = a;

• the operation→ is a residuation operation with respect to ∗, i.e.,

a ∗ b ≤ c iff a ≤ b→ c.

A residuated lattice is complete if its underlying lattice is complete.

The derived operation is biresiduum:

a↔ b = (a→ b) ∧ (b→ a).

Our investigation will be based on Łukasiewicz algebra LŁ. It is a residuated lattice with the support
L = [0, 1] where

a ∗ b = 0 ∨ (a+ b− 1),

a→ b = 1 ∧ (1− a+ b),

a↔ b = 1− | a− b | .
The other well known examples of residuated lattice are Boolean algebra, Gödel algebra and product

algebra.

2.2 L-fuzzy Space
Assume that we are given a complete residuated lattice L and a non-empty universal setX ⊆ R where R is
the set of real numbers. An L-valued fuzzy set is a mapping A : X → L. A core of a fuzzy set A is the set
Core(A) = {x ∈ X| A(x) = 1}. We say that a fuzzy set is normal if there exists xA ∈ X : A(xA) = 1.
The class of L-valued fuzzy sets of X will be denoted by LX .

Let A, B ∈ LX be fuzzy sets. A fuzzy equality (A ≡ B) is given by the following formula

(A ≡ B) =
∧
x∈X

(A(x)↔ B(x))†). (1)

∗)In this paper we assume a residuated lattice to be bounded, commutative and integral.
†)for a general definition of fuzzy equality, e.g., [7, 12, 16]
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The fuzzy equality determines a degree of coincidence of two fuzzy sets expressed by an element of the
residuated lattice.

It is known that
(A ≡ B) = 1 iff ∀x ∈ X, A(x) = B(x),

In this case we will write A = B instead of A ≡ B.

Definition 2
The pair (LX ,≡) is a fuzzy space on X .

The definition of fuzzy space introduces a basic set of objects together with the basic relation of equal-
ity.

Example 1
Let X = [a, b], L = LŁ. Let us show how the fuzzy equality ≡ is expressed. Assume that A, B ∈
[0, 1][a,b].

A ≡ B =
∧

x∈[a,b]

(A(x)↔ B(x)) =
∧

x∈[a,b]

(1− | A(x)−B(x) |) =

1−
∨

x∈[a,b]

| A(x)−B(x) | .

Thus the pair ([0, 1][a,b], 1−
∨
x∈[a,b] | A(x)−B(x) |) is a fuzzy space on [a, b] determined by Łukasiewicz

algebra.
In the special case where fuzzy sets on [a, b] are continuous mappings, the fuzzy equality ≡ between

them can be simplified to

1−
∨

x∈[a,b]

| A(x)−B(x) |= 1− max
x∈[a,b]

| A(x)−B(x) |= 1− d(A,B),

where d(A,B) is the distance in the metric space of continuous functions.

2.3 Fuzzy Function
We will use the notion of fuzzy function introduced in [20]. According to [20], a fuzzy function is an
ordinary mapping between two fuzzy spaces. In more details,

Definition 3
Let L be a complete residuated lattice and (LX ,≡), (LY ,≡) fuzzy spaces on X and Y , respectively. A
mapping f : LX −→ LY is a fuzzy function if for every A,B ∈ LX ,

A = B implies f(A) = f(B). (2)

Let us remark that there are other definitions of fuzzy function in [7, 9, 10, 16] where fuzzy function is
defined as a fuzzy set of function or as a special fuzzy relation.

Below, we give an example of a fuzzy function which is reproduced from [21].

Example 2 (Fuzzy functions determined by a fuzzy relation)
Let (LX ,≡), (LY ,≡) be fuzzy spaces on X and Y respectively, R ∈ LX×Y a fuzzy relation. For every
A ∈ LX , we define the ◦-composition of A and R by

(A ◦R)(y) =
∨
x∈X

(A(x) ∗R(x, y)). (3)

Composition (3) determines the fuzzy set A ◦R on Y . The corresponding mapping f◦R : A 7→ A ◦R is a
fuzzy function defined on the whole fuzzy space LX .
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2.4 Fuzzy Interpolation
The problem of fuzzy interpolation includes two subproblems: a choice of a set of interpolation functions
and an extension of an original fuzzy function.

In other words, let {(Ai, Bi), i = 1, . . . , n} be a set of fuzzy data and Ai ∈ LX , i = 1, . . . , n are
pairwise different fuzzy sets with respect to =, Bi ∈ LY , i = 1, . . . , n. Let a fuzzy function f : Ai →
Bi, i = 1, . . . , n have the domain M = {A1, . . . , An}, and P be a domain of an interpolation fuzzy
function g whereM⊂ P ⊆ LX . LetN ⊆ {g | g : P −→ LY } be a chosen subset of a fuzzy function for
the fuzzy interpolation. Our goal is to find an fuzzy function g ∈ N satisfying the interpolation condition

g(Ai) = Bi, i = 1, . . . , n. (4)

The fuzzy function g is called an interpolation fuzzy function for fuzzy data. Also we call the interpolation
fuzzy function g an extension of f on the domain P .

We can also rewrite the interpolation condition (4) as follows:

A = Ai implies g(A) = Bi, i = 1, . . . , n. (5)

2.5 Similarity and Fuzzy Point

A binary fuzzy relation E on X is called a similarity on X if for all x, y, z ∈ X , the following properties
hold:

1. E(x, x) = 1,

2. E(x, y) = E(y, x),

3. E(x, y) ∗ E(y, z) ≤ E(x, z).

Let E be a similarity on X . A fuzzy set Et, t ∈ X , where Et(x) = E(t, x) for all x ∈ X is called an
E-fuzzy point of X .

3 Fuzzy Rule Base Interpolation
In this contribution, we will investigate another approach to fuzzy interpolation, proposed in [5]. It assumes
that an original function is expressed by a set of fuzzy IF-THEN rules

RB = {“If x is Ai then y is Bi”}i=1,...,n (6)

(Ai and Bi are respective fuzzy sets on X and Y ), and the rules are sparse in the sense that Ai ∩ Aj = ∅,
i 6= j. The fuzzy interpolation is proposed to be realized in a form of an algorithm which produces a
consequence B to an antecedence A (A and B are fuzzy sets too). An interpolating algorithm should
respect the following requirement:

“The more the input A is close to Ai
the more the output B must be close to Bi.”

(7)

In [5], a general interpolating algorithm is proposed. Below, we give its essential details that char-
acterize relations of closeness on both universes and describe the way of computing B according to the
requirement (7).
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The closeness relations between two fuzzy sets show how much one is similar or is included into the
other one. Let S = {Sλ; 0 ≤ λ ≤ +∞}, be any nested family of fuzzy similarity relations on R such that
S0 is the crisp equality and S+∞=1. Then

closeλ(E,D) = min(ISλ(D|E), ISλ(E|D)), (8)

where
ISλ(D|E) = infu∈R {E(u)→ (Sλ ◦D)(u)} . (9)

According to [5], the value of (algorithmically defined) interpolating function at point A is fuzzy set B
such that

B = InterpolRB(A) = ∩Ri∈K(A) ∩λ≥0 closeλ(A,Ai)→ (Sf(λ) ◦Bi), (10)

where K(A) is a subset of fuzzy rules related to A,→ is the residuum of a left-continuous t-norm ∗, and ◦
is the max-* composition. Moreover, for each 0 < λ ≤ +∞,

f(λ) = inf {µ | closeλ(A1, A2) ≤ closeµ(B1, B2)} , (11)

where µ is any parameter which satisfies the inequality closeλ(A1, A2) ≤ closeµ(B1, B2). It is proved in
[5] that thus proposed algorithm fulfils the requested requirement (7).

It is seen from the description above, that a specification of the algorithm requires a choice of a para-
metric family of fuzzy similarity relations S and operations from a certain residuated lattice. One partial
specification was proposed in [5] as well. It is based on an arbitrary left-continuous t-norm ∗ and the
parametric family of fuzzy similarity relations on R2:

Sλ(x, y) = max(1− | x− y |
λ

, 0). (12)

4 Main Result
Our purpose it to show that the interpolation algorithm presented in [5] and based on the fuzzy prescrip-
tion (7) satisfies the interpolation condition in the sense (4). It means that the interpolation function
InterpolRB(A) (cf. (10)) fulfils the interpolation condition in the form

(∀Ai) InterpolRB(Ai) = Bi, i = 1, . . . , n.

4.1 Assumptions and Preliminaries
The Łukasiewicz algebra is chosen as an underlying residuated lattice. Without lost of generality, we
assume that only two IF-THEN fuzzy rules specify an original function so that the subset of IF-THEN
fuzzy rules connected with A is

K(A) = {A1 → B1, A2 → B2}.

Let A1, A2 be normal and triangular shaped fuzzy sets (inputs) defined on X ⊂ R and B1, B2 be normal
and triangular shaped fuzzy sets (outputs) defined on Y ⊂ R. Obviously, the core of a triangular shaped
fuzzy set consists of one element – the core point. Denote core points of A1, A2 by xA1 and xA2 , and
similarly, core points of B1, B2 by yB1 and yB2 , respectively. Denote (arbitrary) normal and triangular
shaped fuzzy set on X ⊂ R by A, and its core point by xA. Our aim is to prove that the fuzzy set B given
by (10) fulfils (4).

Let Sλ be a similarity on X and λ ≥ 0 a fixed real number. The composition between Sλ and A is
given by

(Sλ ◦A)(x) =
∨
u

(Sλ(x, u) ∗A(u)).

In the following proposition we will show how the similarity relation Sλ affects a fuzzy set.
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Figure 1: Fuzzy sets on X

Proposition 1
Let A be a normal fuzzy set and xA ∈ X be its core point. Let moreover, SλxA be the Sλ-fuzzy point
determined by xA, i.e. SλxA = Sλ(xA, x). Then for all x ∈ X:

1. (Sλ ◦A)(x) ≥ A(x),

2. (Sλ ◦A)(x) ≥ SλxA(x),

3. there exists λ∗ ≥ 0 such that A(x) ≤ Sλ∗xA(x) and then (Sλ∗ ◦A)(x) = Sλ
∗

xA(x).

PROOF: By the assumption, A(xA) = 1. We will use properties of a similarity relation and obtain:

1. (Sλ ◦A)(x) =
∨
u(Sλ(x, u) ∗A(u)) ≥ (Sλ(x, x) ∗A(x)) = A(x).

2. (Sλ ◦A)(x) =
∨
u(Sλ(x, u)∗A(u)) ≥ (Sλ(x, xA)∗A(xA)) = Sλ(x, xA) = Sλ(x, xA) = SλxA(x).

3. Assume that A(u) ≤ Sλ∗xA(u) so that the following holds: (Sλ∗ ◦A)(x) =
∨
u(Sλ∗(x, u) ∗A(u)) ≤∨

u(Sλ∗(x, u) ∗ Sλ∗(xA, u)) =
∨
u(Sλ∗(x, u) ∗ Sλ∗(u, xA)) = Sλ∗(x, xA) = Sλ∗(xA, x). On the

other side, (Sλ∗ ◦A)(x) ≥ Sλ
∗

xA(x) for λ∗ ≥ 0. Therefore, (Sλ∗ ◦A)(x) = Sλ
∗

xA(x).

2

By the proposition above, we can rewrite (8) as follows:

closeλ(A1, A2) = min(ISλ∗ (A2|A1), ISλ∗ (A1|A2)) =

=
∧
x

(Sλ∗ ◦A1 ↔ Sλ∗ ◦A2)

where

ISλ(A2|A1) = infx∈R {A1(u)→ (Sλ∗ ◦A2)(u)} =
= infx∈R {Sλ∗(xA1 , x)→ Sλ∗(xA2 , x)} ,

-6-



I. Perfilieva et al. Fuzzy Interpolation According to Fuzzy and Classical Conditions

0

1

 

 

S
λ
 ° A

Sλ
x

A

A

Figure 2: Properties (Sλ ◦A)(x) ≥ A(x) and (Sλ ◦A)(x) ≥ SλxA(x)

and similarly ISλ(A1|A2).
Let us simplify the expression (10) by applying assumptions that are accepted at the beginning of this

subsection. Moreover, we replace similarities by distances (similar approach has been used in [22]). The
distance between two triangular shaped fuzzy sets is considered as a distance between their core points‡):

d(A,A1) = | xA − xA1 |, d(A,A2) = | xA − xA2 |,
d(A1, A2) = | xA1 − xA2 |

and
d(B1, B2) = | yB1 − yB2 | .

Proposition 2
Let A1, A2 be normal and triangular shaped fuzzy sets with xA1 , xA2 ∈ X as respective cores. Let Sλ∗
be given by (12), and λ∗ ≥ 0. Then∧

x

(Sλ∗ ◦A1 ↔ Sλ∗ ◦A2) = Sλ∗(xA1
, xA2

).

PROOF: We use the following property of the absolute value: | a − b |≥|| a | − | b || or equivalently,
−(|| a | − | b ||) ≥ −(| a | − | b |).
‡)Recall that each triangular shaped fuzzy set has exactly one core point so that our definition of a distance is correct.
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Figure 3: Property A(x) ≤ Sλ∗xA(x), (Sλ∗ ◦A)(x) = Sλ
∗

xA(x)

∧
x

(Sλ∗ ◦A1 ↔ Sλ∗ ◦A2) =
∧
x

(Sλ
∗

xA1
(x)↔ Sλ

∗

xA2
(x)) =

∧
x

(1− | Sλ∗(xA1
, x)−

Sλ∗(xA2 , x) |) =
∧
x

(
1−

∣∣∣∣1− | xA1 − x |
λ∗

− 1 +
| xA2 − x |

λ∗

∣∣∣∣) =

∧
x

(
1−

∣∣∣∣ | xA2
− x |

λ∗
− | xA1

− x |
λ∗

∣∣∣∣) =
∧
x

(
1− 1

λ∗
|| xA2

− x | − | xA1
− x ||

)
= 1−

∨
x

1

λ∗
(|| xA2

− x | − | xA1
− x ||) ≥ 1−

∨
x

1

λ∗
(|xA2

− x− xA1
+ x|) =

1−
∨
x

1

λ∗
(|xA2

− xA1
|) = 1− 1

λ∗
(|xA2

− xA1
|) = Sλ∗(xA1

, xA2
)

Assume that x ≤ xA1 ≤ xA2 . Three cases are possible.

1. x ≤ xA1
≤ xA2

. In this case, | xA2
− x |= xA2

− x. Similarly for | xA1
− x |.

1−
∨
x

1

λ∗
(|| xA2

− x | − | xA1
− x ||) = 1−

∨
x

1

λ∗
(|xA2

− x− xA1
+ x|)

= 1−
∨
x

1

λ∗
(|xA2

− xA1
|) = 1− 1

λ∗
(|xA2

− xA1
|) = Sλ∗(xA1

, xA2
)
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Figure 4: Distances between fuzzy sets

2. Assume that xA1
≤ xA2

≤ x so that | xA2
− x |= x− xA2

, and similarly for | xA1
− x |.

1−
∨
x

1

λ∗
(|| xA2

− x | − | xA1
− x ||) = 1−

∨
x

1

λ∗
(|−xA2

+ x+ xA1
− x|)

= 1−
∨
x

1

λ∗
(|xA1 − xA2 |) = 1− 1

λ∗
(|xA2 − xA1 |) = Sλ∗(xA1 , xA2)

3. Finally, let xA1 ≤ x ≤ xA2 so that| xA2 − x | is equal to xA2 − x. The absolute value | xA1 − x | is
equal to | xA1 − x |= x− xA1 . Without lost of generality, let us choose x = xA1 .

∧
x

(
1− 1

λ∗
(|| xA2

− x | − | xA1
− x ||)

)
=

∧
x

(
1− 1

λ∗
(|xA2 − x+ xA1 − x|)

)
≤ 1− 1

λ∗
(|xA2 − xA1 + xA1 − xA1 |) =

1− 1

λ∗
(|xA2

− xA1
|) = 1− 1

λ∗
(|xA2

− xA1
|) = Sλ∗(xA1

, xA2
)

2

4.2 The Main Result
The following are assumptions of the main result:

1. Let λ1 ≤ λ2 then Sλ1 ≤ Sλ2 ,

2. A1, A2 are normal fuzzy sets and xA1
≤ xA2

,

3. ∃λ∗ ≥ 0 : ∀i = 1, 2 Ai ≤ Sλ
∗

xAi
,
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4. Sλ
∗

xA1
∧ Sλ∗xA2

= 0.

We will describe and concretize the other parts of the expression (10) by means of distances.
Let λ∗ ≤ λ ≤ +∞. Let us remind that the same parametric family of fuzzy similarity relations on R2

is given by (12).

Sλ(x,y)

Figure 5: Similarity relation

The idea is that we extend the fuzzy set A1 by applying to it Sλ where λ∗ ≤ λ ≤ +∞.
Now we rewrite the expression (8) (degree of closeness) using distances. For each 0 < λ ≤ +∞,

closeλ(A1, A2) = min(ISλ(A2|A1), ISλ(A1|A2)) =
λ− | xA1

− xA2
|

λ
, (13)

and respectively,

closeλ(A,Ai) =
λ− | xA − xAi |

λ
, i = 1, 2. (14)

The respective value f(λ) can now be expressed as

f(λ) =
λ | yB1

− yB2
|

| xA1 − xA2 |
. (15)

The expression (15) is equivalent to (11). However, (15) is represented with the help of distances and by
this, its meaning is clearer.
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Figure 6: Extension fuzzy set A1

Finally, we will characterize the fuzzy set B given by (10) with the help of distances too.

B =

2∧
i=1

∧
λ

(closeλ(A,Ai)→ (Sf(λ) ◦Bi)(y)) =

2∧
i=1

∧
λ

(
1− 1 +

| xA − xAi |
λ

+ (Sf(λ) ◦Bi)(y)
)

=

2∧
i=1

∧
λ

(
| xA − xAi |

λ
+ (Sf(λ) ◦Bi)(y)

)

Now, we can prove that the interpolation condition (5) is fulfilled.

Theorem 1
If A = Ai then B = Bi for i = 1, 2.
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Figure 7: Construction of output fuzzy set B

PROOF: Conclusion

B =

2∧
i=1

∧
λ

(closeλ(A,Ai)→ (Sf(λ) ◦Bi)(y)) =

2∧
i=1

∧
λ

(
0 ∨

(
1− 1 +

| xA − xAi |
λ

+ (Sf(λ) ◦Bi)(y)
))

=

2∧
i=1

∧
λ

(
0 ∨

(
| xA − xAi |

λ
+ (Sf(λ) ◦Bi)(y)

))
=[∧

λ

(
| xA − xA1 |

λ
+ (Sf(λ) ◦B1)(y)

)]∧
[∧
λ

(
| xA − xA2 |

λ
+ (Sf(λ) ◦B2)(y)

)]
= B′ ∧B′′

For each i = 1, 2, we will prove that A = Ai ⇒ B = Bi.
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Let A = A1.

B′ =
∧
λ

(closeλ(A1, A1)→ (Sf(λ) ◦B1)(y)) =

∧
λ

(
| xA1 − xA1 |

λ
+ (Sf(λ) ◦B1)(y)

)
=

∧
0<λ≤λ′

(
| xA1 − xA1 |

λ
+ (Sf(λ) ◦B1)(y)

)
∧

∧
λ>λ′

(
| xA1

− xA1
|

λ
+ (Sf(λ) ◦B1)(y)

)
=∧

0<λ≤λ′

(
0 + (Sf(λ) ◦B1)(y)

)
∧
∧
λ>λ′

(
0 + (Sf(λ) ◦B1)(y)

)
=

B1(y) ∧

[ ∧
λ>λ′

(
0 + (Sf(λ) ◦B1)(y)

)]
= B1(y) ∧

[ ∧
λ>λ′

(
(Sf(λ)(yB1

, y)
)]

= B1

The latter equality follows from
∧

0<λ≤λ′
(
(Sf(λ) ◦B1)(y)

)
= B1 which can be justified by the fol-

lowing chain of inequalities:

f(λ′) ≤| yB1 − y |,

λ′
| yB1

− yB2
|

| xA1
− xA2

|
≤| yB1

− y |,

λ′
| yB1 − yB2 |
| xA1

− xA2
|
≤| yB1 − y |,

λ′ ≤| yB1
− y | | xA1

− xA2
|

| yB1 − yB2 |
.
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B′′ =
∧
λ

(closeλ(A1, A2)→ (Sf(λ) ◦B2)(y)) =

∧
λ

(
| xA1 − xA2 |

λ
+ (Sf(λ) ◦B2)(y)

)
=

∧
λ

(
| xA1

− xA2
|

λ
+ (1− | yB2

− y |
f(λ)

∨ 0)

)
=

∧
λ

(
1 +
| xA1

− xA2
|

λ
− | yB2

− y |
f(λ)

)
=

∧
λ

(
1−

(
| yB2

− y |
f(λ)

− | xA1
− xA2

|
λ

))
=

∧
λ

1−

 | yB2
− y |

λ|yB1
−yB2

|
|xA1

−xA2
|

− | xA1
− xA2

|
λ

 =

∧
λ

(
1−

(
| yB2 − y || xA1 − xA2 |

λ | yB1
− yB2

|
− | xA1 − xA2 |

λ

))
=

∧
λ

(
1− 1

λ

(
| yB2

− y || xA1
− xA2

|
| yB2 − yB1 |

− | xA1 − xA2 |
))

=

∧
λ

(
1− 1

λ

(∣∣∣∣ (yB2
− y)(xA1

− xA2
)

(yB2 − yB1)

∣∣∣∣− | xA1
− xA2

|
))
≥

∧
λ

(
1− 1

λ

(∣∣∣∣ (yB2
− y)(xA1

− xA2
)− ((xA1

− xA2
)(yB2

− yB1
))

(yB2
− yB1

)

∣∣∣∣)) =

∧
λ

(
1− 1

λ

(∣∣∣∣−y(xA1
− xA2

) + xA1
yB1
− xA2

yB1

(yB2
− yB1

)

∣∣∣∣)) =

∧
λ

(
1− 1

λ

(∣∣∣∣yB1(xA1 − xA2)− y(xA1 − xA2)

(yB2
− yB1

)

∣∣∣∣)) =

∧
λ

(
1− 1

λ

(∣∣∣∣ (xA1 − xA2)(yB1 − y)
(yB2

− yB1
)

∣∣∣∣)) =

∧
λ

(
1− 1

λ

(∣∣∣∣ (xA1 − xA2)

(yB2
− yB1

)

∣∣∣∣ | yB1 − y |
))

=

∧
λ

(
1− 1

λ

∣∣∣∣ (xA1
− xA2

)

(yB1 − yB2)

∣∣∣∣ (| yB1 − y |)
)

=

∧
λ

((
1− 1

f(λ)
(| (yB1

− y) |)
)
∨ 0

)
= ∧

λ

(
Sf(λ) ◦B1

)
Finally,

A = A1 ⇒ B = B′ ∧B′′ = B1 ∧B′′ = B1,

where B′′ ≥
∧
λ

(
Sf(λ) ◦B1

)
and

∧
λ

(
Sf(λ) ◦B1

)
= B1.

Similarly for A = A2.
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So it holds
A = Ai ⇒ B = Bi, i = 1, 2.

2

0

1

A=A
1
 ⇒  B=B

1

 

 

∧
i
 ∧

λ
 (close

λ
(A

1
,A

i
) → (S

f(λ)
° B

i
)(y)) = B

1

B
1

B
2

B
1

B
2

Figure 8: Interpolation condition, A = A1 → B = B1
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Conclusions
We have proposed a definition of interpolation of fuzzy data, which stems from the classical approach based
on rigorous interpolation condition. We investigated another approach to fuzzy interpolation (published in
[5]) with relaxed interpolation condition. We simplified and illustrated in various pictures the interpolation
algorithm that is based on the proposed in [5] approach. We proved that even if the interpolation condition is
relaxed the related algorithm gives an interpolating fuzzy function which fulfils the interpolation condition
in the classical sense. Thus the interpolation algorithm in [5] is in the agreement with the definition of
interpolation of fuzzy data which we proposed.
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Figure 9: Interpolation condition, A = A2 → B = B2
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