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Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
e-mail: pape@eunet.yu

Abstract: There is given a short overview of the monograph ”Aggregation Functions”

(M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap), Cambridge University Press (in

press) with more details from introductory Chapters 1 and 2.

Keywords: aggregation function, continuity, absolute continuity, Lipschitz condition,

conjunction, disjunction, internality

1 Introduction

The central problem we are investigated in this book is the process of combining
several numerical values into a single representative, one is called aggregation,
and the numerical function performing this process is called aggregation func-
tion, asking also some natural conditions as monotonicity and boundary condi-
tions. There is large field of application of aggregation: applied mathematics
(e.g., probability, statistics, decision theory), computer sciences (e.g., artifi-
cial intelligence, operations research), as well as many applied fields (economy
and finance, pattern recognition and image processing, data fusion, multicrite-
ria decision aid, automated reasoning, etc.). The rapid growing of the above
mentioned application fields, largely due to the arrival of computers, has made
necessary the establishment of a sound theoretical basis for aggregation func-
tions. Most of the results were disseminated in various journals or specialized



books, where usually only one specific class of aggregation functions devoted
to one specific domain is discussed. Today, an important amount of literature
is already available, many significant results have been found (such as charac-
terizations of various families of aggregation functions), and many connections
have been done with either related fields or former works (such as triangular
norms in probabilistic metric spaces, theory of means and averages, etc.), see
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For the researcher as well as for the practitioner,
this proficiency and abundance of literature, but scattered in many domains,
are more a handicap than an advantage, and there is a real lack of a unified and
complete view of aggregation functions, where one could find the most impor-
tant concepts and results, presented in a clear and rigorous way. This book has
been written in the intention of filling this gap: it offers a full, comprehensive,
rigorous and unified treatment of aggregation functions, and is intended to serve
as a reference book in the field. Our main motivation has been to bring a unified
viewpoint of the aggregation problem, and to provide an abstract mathematical
presentation and analysis of aggregation functions used in various disciplines,
without referring explicitly to a given domain. The book also provides to the
field a unified terminology and notation.

After giving the contents of the book, we present only the basic definition
of the aggregation function with few common examples. As an illustration, we
mention only two additional elementary mathematical properties: continuity
and position with respect to Min and Max. After that we mention very briefly
some topics of the book.

2 Contents of the book

Preface
Chapter 1. Introduction
1.1 Main motivations and scope
1.2 Basic definitions and examples
1.3 Conventional notation
Chapter 2. Properties for aggregation
2.1 Introduction
2.2 Elementary mathematical properties
2.2.1 Monotonicity
2.2.2 Continuity
Standard continuity
A stronger form: Uniform continuity
A stronger form: Absolute continuity
A stronger form: Lipschitz condition
Weaker forms: left and right continuities
2.2.3 Symmetry
Going from the symmetric case to the nonsymmetric case
2.2.4 Idempotency
Idempotent functions



Idempotent elements
Range-idempotent functions
Endpoint-preservation
Strong idempotency
Idempotizable functions
2.2.5 Conjunction, disjunction, and internality
k-conjunctive and k-disjunctive functions
2.3 Grouping based properties
2.3.1 Associativity
2.3.2 Decomposability and strong decomposability
Decomposability
Strong decomposability
2.3.3 Autodistributivity
2.3.4 Bisymmetry
2.4 Invariance properties
2.4.1 Ratio, difference, interval, and log-ratio scales
2.4.2 Ordinal scales
2.4.3 Inversion of scales
2.5 Further properties
2.5.1 Neutral and annihilator elements
2.5.2 Additivity and related properties
Chapter 3. Conjunctive and disjunctive aggregation functions
3.1 Preliminaries and general notes
3.2 Generated conjunctive aggregation functions
3.3 Triangular norms and related conjunctive aggregation functions
3.3.1 Conjunctors and bwt-norms
3.3.2 Basic t-norms
3.3.3 Families of t-norms
3.3.4 Different kinds of continuities for t-norms
3.3.5 Continuous Archimedean t-norms
3.3.6 Additive generators of t-norms
3.3.7 Ordinal sums of t-norms and representation of continuous t-norms
3.3.8 T-subnorms
3.3.9 Convergence of t-norms
3.4 Copulas and quasi-copulas
3.4.1 General copulas
3.4.2 Representation of copulas and Archimedean copulas
3.4.3 Some additional results on copulas
3.4.4 Quasi-copulas
3.5 Disjunctive aggregation functions
3.6 Uninorms
3.6.1 Basic properties
3.6.2 Characterization of uninorms
3.6.3 Idempotent uninorms
3.6.4 Generated uninorms
3.7 Nullnorms



3.8 More aggregation functions related to t-norms
(i) Gamma operators
(ii) Exponential convex T-S-operators
(iii) Linear convex T-S-operators
(iv) Symmetric sums related to t-norms and t-conorms
3.9 Restricted distributivity
Chapter 4. Means and averages
4.1 Introduction and definitions
4.2 Quasi-arithmetic means
4.2.1 Axiomatization of quasi-arithmetic means
4.2.2 Subclasses of quasi-arithmetic means
4.3 Generalizations of quasi-arithmetic means
4.3.1 Quasi-linear means and quasi-linear functions
4.3.2 Quasi-arithmetic means with weight function
4.3.3 Nonstrict quasi-arithmetic means
4.4 Associative means
4.5 Means constructed from a mean value property
4.5.1 Lagrangian means
4.5.2 Cauchy means
4.6 Constructing means
4.6.1 Idempotization
4.6.2 Symmetrization
4.6.3 Minimization
4.7 Further extended means
4.7.1 Sierpiński carpet
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3 Definition and examples

A first natural requirement comes from the fact that the output should be a
synthetic value. Then, if inputs are supposed to lie in interval [a, b], the output
should also lie in this interval. Moreover, if all input values are identical to
the lower bound a, then the output should be also a, and similarly for the case
of the upper bound b. This defines a boundary condition. A second natural
requirement is nondecreasing monotonicity. It means that if some of the input
values increase, the representative output value should reflect this increase, or
at worst, stay constant. These two requirements are commonly accepted in the
field, and we adopt them as the basic definition of an aggregation function.

We assume throughout that the variables of any aggregation function have
a common domain I which is a nonempty real interval, bounded or not. In
some exceptional cases, I will represent a nonempty interval of the extended
real number system R := [−∞,∞]. This latter case will always be mentioned
explicitly and then we will often consider the convention that 0 · ∞ = 0 and
∞ + (−∞) = −∞. Denote by N the set of strictly positive integers and [n] :=
{1, . . . , n}. Further, |K| is the cardinal number of the set K.

Definition 3.1. An aggregation function in I
n is a function A(n) : I

n → I that

(i) is nondecreasing (in each variable)

(ii) fulfills the boundary conditions

inf
x∈In

A(n)(x) = inf I and sup
x∈In

A(n)(x) = sup I.

To give a first instance, the arithmetic mean, defined by

AM(n)(x) :=
1
n

n∑
i=1

xi (1)

is clearly an aggregation function in any domain I
n.

The aggregation of a singleton is not an actual aggregation, the following
convention is often considered: A(1)(x) = x (x ∈ I).

We now introduce the concept of extended aggregation function.

Definition 3.2. An extended aggregation function in ∪n∈NI
n is a mapping

A :
⋃
n∈N

I
n → R.



whose restriction A(n) := A|In to I
n is an aggregation function in I

n for any
n ∈ N.

For example, the arithmetic mean as an extended aggregation function is
the sequence (AM(n))n∈N, where AM(n) is defined by (1) for all n ∈ N.

For illustration we now give a small list of well-known aggregation functions.

(i) The arithmetic mean function AM : I
n → I and the geometric mean

function GM : I
n → I are respectively defined by

AM(x) :=
1
n

n∑
i=1

xi, GM(x) :=
( n∏

i=1

xi

)1/n

.

Note that, when n > 1, the geometric mean is not an aggregation function
in any domain. We must consider a domain I

n such that I ⊆ [0,∞].

(ii) For any k ∈ [n], the projection function Pk : I
n → I and the order statistic

function OSk : I
n → I associated with the kth argument, are respectively

defined by
Pk(x) := xk, OSk(x) := x(k),

where x(k) is the kth lowest coordinate of x, that is,

x(1) � · · · � x(k) � · · · � x(n).

The projection onto the first and the last coordinates are defined as

PF (x) := P1(x) = x1, PL(x) := Pn(x) = xn.

Similarly, the extreme order statistics x(1) and x(n) are respectively the
minimum and maximum functions

Min(x) := min(x1, . . . , xn),

Max(x) := max(x1, . . . , xn),

which will sometimes be written by means of the lattice operations ∧ and
∨, respectively, that is,

Min(x) =
n∧

i=1

xi and Max(x) =
n∨

i=1

xi.

The median of an odd number of values (x1, . . . , x2k−1) is simply defined
by

Med(x1, . . . , x2k−1) := x(k),

which can be rewritten as

Med(x1, . . . , x2k−1) =
∧

K⊆[2k−1]
|K|=k

∨
i∈K

xi.



For instance, we have

Med(x1, x2, x3) = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

For any α ∈ I, we also define the α-median, Medα : I
n → I, by

Medα(x) = Med(x1, . . . , xn, α, . . . , α︸ ︷︷ ︸
n−1

).

(iii) For any nonempty subset K ⊆ [n], the partial minimum MinK : I
n → I and

the partial maximum MaxK : I
n → I, associated with K, are respectively

defined by
MinK(x) :=

∧
i∈K

xi, MaxK(x) :=
∨
i∈K

xi.

(iv) For any weight vector w = (w1, . . . , wn) ∈ [0, 1]n such that
∑n

i=1 wi = 1,
the weighted arithmetic mean function WAMw : I

n → I and the ordered
weighted averaging function OWAw : I

n → I associated with w, are re-
spectively defined by

WAMw(x) :=
n∑

i=1

wi xi, OWAw(x) :=
n∑

i=1

wi x(i).

(v) The sum Σ : R
n → R and product Π : R

n → R functions are respectively
defined by

Σ(x) :=
n∑

i=1

xi, Π(x) :=
n∏

i=1

xi.

Note that, when n > 1, these latter two functions are not aggregation
functions in any domain. For the sum, we need to consider the domains
[−∞,∞]n, [−∞,∞[n, ] − ∞,∞]n, ] − ∞,∞[n, [0,∞]n, ]0,∞]n, [0,∞[n,
]0,∞[n,[−∞, 0]n, ] −∞, 0]n, [−∞, 0[n, ] −∞, 0[n. For the product, when
restricted to [0,∞]n, we have to consider the domains [0, 1]n, ]0, 1]n, [0, 1[n,
]0, 1[n, [1,∞]n, ]1,∞]n, [1,∞[n, ]1,∞[n, [0,∞]n, ]0,∞]n, [0,∞[n, ]0,∞[n.

(vi) Assume I = [a, b] is a closed interval. The smallest and the greatest
aggregation functions in [a, b]n are respectively defined by

A⊥(x) :=

{
b, if xi = b for all i ∈ [n],
a, otherwise.

A�(x) :=

{
a, if xi = a for all i ∈ [n],
b, otherwise.

By definition, we have A⊥ � A � A� for any aggregation function A :
[a, b]n → [a, b].



4 Elementary mathematical properties

The basic properties for aggregation functions are divided into elementary math-
ematical properties (monotonicity, continuity, symmetry, etc.), grouping based
properties (associativity, decomposability, etc.), invariance to a change of scale
(ratio, difference, interval, ordinal scales), and various other properties (neu-
tral and annihilator elements, additivity, etc.). We also introduce invariance
properties related to the scale types of the variables being aggregated.

We restrict here only on an analytical property: continuity, and the position
on real axe.

4.1 Continuity

Standard continuity

Definition 4.1. F : I
n → R is a continuous function if

lim
x→x∗

x∈In

F(x) = F(x∗) (x∗ ∈ I
n).

The continuity property essentially means that any small changes in the ar-
guments (possible minor errors) should not entail a big change in the aggregated
value (output error).

Figure 1. provides a Venn diagram showing the relationship between some
classes of functions defined on bounded closed intervals.

Integrable

Bounded

Continuous

Absolutely continuous

Bounded variation

Monotone

Lipschitz

Figure 1: Relations between some classes of functions



A stronger form: Uniform continuity

Definition 4.2. Let ‖ · ‖ : R
n → [0,∞[ be a norm and let D ⊆ I

n. A function
F : I

n → R is uniformly continuous in D (with respect to ‖ · ‖) if for every
ε > 0 there exists δ > 0 such that |F(x) − F(y)| < ε whenever ‖x − y‖ < δ and
x,y ∈ D.

A function F : [a, b]n → R is uniformly continuous in [a, b]n if and only if it
is continuous in [a, b]n.

A stronger form: Absolute continuity

Definition 4.3. We say that the unary function f : [a, b] → R is absolutely
continuous if, for every ε > 0, there exists δ > 0 such that for any finite
system of pairwise nonintersecting intervals ]ai, bi[ ⊂ ]a, b[, i ∈ [n], for which∑n

i=1(bi − ai) < δ the inequality
∑n

i=1 |f(bi) − f(ai)| < ε holds.

Every absolutely continuous function on a closed interval is continuous on
this interval.

We extend the notion of absolutely continuity to functions of two variables.
For that purpose we introduce, for a subrectangle R = [a′, b′]× [c′, d′] of [a, b]×
[c, d] and a function F : [a, b] × [c, d] → R, the following notation

ΔR(F) = F(a′, c′) − F(b′, c′) − F(a′, d′) + F(b′, d′).

Definition 4.4. We say that F : [a, b] × [c, d] → R is absolutely continuous if
the following two conditions are satisfied

(i) given ε > 0, there exists δ > 0 such that∑
R∈R

|ΔR(F)| < ε

whenever R is a finite collection of pairwise nonoverlapping subrectangles
R = [a′, b′] × [c′, d′] of [a, b] × [c, d] with∑

R∈R
λ(R) < δ ,

where λ is the Lebesgue measure;

(ii) the marginal functions F(·, d) and F(b, ·) are absolutely continuous func-
tions of a single variable on [a, b] and [c, d], respectively.

A stronger form: Lipschitz condition The continuity property can be
strengthened into the well-known Lipschitz condition.



Definition 4.5. Let ‖ · ‖ : R
n → [0,∞[ be a norm. If a function F : I

n → R

satisfies the inequality

|F(x) − F(y)| � c ‖x− y‖ (x,y ∈ I
n), (2)

for some constant c ∈ ]0,∞[ , then we say that F satisfies the Lipschitz condition
or is Lipschitzian (with respect to ‖·‖). More precisely, any function F : I

n → R

satisfying (2) is said to be c-Lipschitzian. The greatest lower bound of constants
c > 0 in (2) is called the Lipschitz constant.

Important examples of norms are given by the Minkowski norm of order
p ∈ [1,∞[, namely

‖x‖p :=

(
n∑

i=1

|xi|p
)1/p

,

also called the Lp-norm, and its limiting case ‖x‖∞ := maxi |xi|, which is the
Chebyshev norm.

The c-Lipschitz condition has an interesting interpretation when applied in
aggregation. It allows us to estimate the relative output error in comparison
with input errors

|F(x) − F(y)| � c ε

whenever ‖x − y‖ � ε for some ε > 0.
The Lipschitz property of functions is defined standardly on domains where

the norm cannot achieve ∞. Formally it can be defined also on I
n for an un-

bounded interval I. However, if I contains −∞ or ∞, then the Lipschitz property
does not imply continuity, in general. For example, the smallest aggregation
function A⊥ on [0,∞]n is Lipschitzian for any norm but it is not continuous.

In all cases when I ⊆ R, the Lipschitz property implies the absolute con-
tinuity. However, the converse does not hold. For instance, log x on ]0, 1] is
absolutely continuous but not Lipschitzian.

Example 4.6. (i) The product Π : [0, 1]2 → [0, 1] is 1-Lipschitzian. There-
fore it is absolutely continuous.

(ii) The geometric mean GM : [0, 1]2 → [0, 1] is not Lipschitzian. However, it
is continuous and therefore uniformly continuous.

Proposition 4.7. The smallest and the greatest aggregation functions defined
in [a, b]n being 1-Lipschitzian with respect to the norm ‖ · ‖p are respectively
given by A

(n)
∗ : [a, b]n → [a, b], with

A
(n)
∗ (x) := Max(b − ‖n · b − x‖p, a),

and A∗(n) : [a, b]n → [a, b], with

A∗(n)(x) := Min(a + ‖x− n · a‖p, b).



4.2 Conjunction, disjunction, and internality

Considering the functions Min and Max as dominating or dominated functions
gives rise to three main classes of aggregation functions: conjunctive functions,
disjunctive functions and internal functions.

Definition 4.8. A : I
n → R is conjunctive if

inf I � A � Min.

Conjunctive functions combine values as if they were related by a logical
“and” operator. That is, the result of combination can be high only if all the
values are high. Thus, a low value can never be compensated by a high value.
The most common conjunctive functions defined on [0, 1]n are t-norms.

Definition 4.9. A : I
n → R is disjunctive if

Max � A � sup I.

Disjunctive functions combine values as an “or” operator, so that the result
of combination is high if at least one value is high. Thus, a high value cannot
be compensated by a low value. Such functions are, in this sense, dual of
conjunctive functions. The most common disjunctive functions defined on [0, 1]n

are t-conorms.

Definition 4.10. A function A : I
n → R is internal if

Min � A � Max.

Internality is a property shared by all the means and averaging functions,
which are the most often encountered functions in the literature on aggregation.
In multicriteria decision making, these functions are also called compensative
functions. In fact, in this kind of functions, a bad (respectively good) score on
one criterion can generally be compensated by a good (respectively bad) one on
another criterion, so that the result of the aggregation will be medium.

5 Some topics of the book

The presentation is mathematical and rigorous, avoiding jargon and inherent
imprecision from the various applied domains where aggregation functions are
used (often under different names such aggregation operators, merging func-
tions, connectives, etc.), but keeping as far as possible the standard terminology
of mathematics. As far as possible, every result is given with its proof, unless
the proof is long and requires extra material. In this case, a reference to the
proof is always given.

A large section is devoted in chapter on disjunctive aggregation functions to
triangular norms (t-norms for short): different families, continuous Archimedean
t-norms, additively generated t-norms, ordinal sums, etc. There are presented



important class of copulas, well known in probability theory, as well as uninorms
and nullnorms (as hybrid of t-norms and t-conorms). The concepts of means
and averages functions, as well as their relationships, are presented in full gen-
erality. Then main subclasses of means, such as quasi-arithmetic ones, some of
their special cases (e.g., root-mean-power functions, exponential means), and
some of their generalizations (e.g., quasi-linear means, quasi-arithmetic means
with weight functions, non-strict quasi-arithmetic means) are presented. Con-
sidering nonadditive integrals in the discrete finite case defines a new important
class of aggregation functions. Nonadditive integrals are defined with respect
to capacities (nonadditive monotone measures), and in particular generalize the
notion of expected value. Special care is taken on the Choquet integral, since
this is the most representative of nonadditive integrals, and the Sugeno inte-
gral, and finally other families of nonadditive integrals. There are given some
operations to create new aggregation functions from existing ones, as transfor-
mation, composition, introduction of weights on variables, ordinal sums, and
various other means (idempotization, symmetrization, etc.). We describe the
aggregation functions that are meaningful when considering ratio, difference,
and interval scales. We analyze how to extend aggregation functions to the
interval [−1, 1] (bipolar scale), that is, to perform a kind a symmetrization with
respect to 0 while keeping properties of the aggregation function. Behavioral
analysis of aggregation functions is done through various indices and values
(like the expected value), which in some sense constitutes the identity card of
the aggregation function.

An important topic in practice is how to choose a suitable aggregation func-
tion. There are given various ways to identify aggregation functions from data.
There are presented the rather unexpected consequences of defining an aggre-
gation function with an infinite (either countable or uncountable) number of
arguments. There is given a short description with references of the main fields
of applications of aggregation functions, essentially in decision making, data fu-
sion, and artificial intelligence, and with more details on an application to the
mixture of uncertainty measures.

6 Conclusion

We present here only few of basic definitions contained in Chapters 1 and 2 of the
book. The book is intended primarily to researchers and graduate students in
applied mathematics and computer sciences, secondarily to practitioners in, e.g.,
decision making, optimization, economy and finance, artificial intelligence, data
fusion, computer vision, etc. It could also be used as a textbook for graduate
students in applied mathematics and computer sciences.
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