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Abstract: This paper presents a new stability analysis method for nonlinear processes with 
Takagi-Sugeno (T-S) fuzzy logic controllers (FLCs). The design of the FLCs is based on 
heuristic fuzzy rules. The stability analysis of these fuzzy control systems is performed using 
LaSalle’s invariant set principle with non-quadratic Lyapunov candidate function. This 
paper proves that if the derivative of Lyapunov function is negative semi-definite in the 
active region of each fuzzy rule, then the overall system will be asymptotically stable in the 
sense of Lyapunov (ISL). The stability theorem suggested in the paper ensures sufficient 
stability conditions for fuzzy control systems controlling a class of nonlinear processes. The 
end of the paper contains an illustrative example that describes an application of the 
stability analysis method. 
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1 Introduction 
The investigations of the stability of Takagi-Sugeno (T-S) fuzzy control systems 
begin before 1990 with increased frequency afterwards [1-5]. In principle, for the 
stability analysis of a fuzzy controller any method can be used witch is suitable for 
the analysis of nonlinear dynamic systems. Today, there exist preoccupations 
reported in the literature [6, 7] on the stability analysis and design of T-S fuzzy 
control systems. The majority of these papers is based on linear matrix inequality 
(LMI) framework [8] and the stability conditions of fuzzy control systems 
employs quadratic Lyapunov functions. In this case, there exist two shortcomings: 

- first, the linearization can result in uncertainties and inaccuracies of the fuzzy 
models involved, 

- second, using the quadratic Lyapunov functions the stability conditions 
become usually very restrictive. 

This paper presents a new stability analysis method for nonlinear processes with 
T-S fuzzy logic controllers (FLCs) without process linearization and without using 
the quadratic Lyapunov functions in the derivation and proof of the stability 
conditions. The rest of the paper is organized as follows. Section 2 recalls the 
Takagi-Sugeno fuzzy control systems controlling nonlinear processes. Section 3 
gives a stability theorem for nonlinear systems with T-S FLCs and an algorithm 
for the design of a stable fuzzy control system. An illustrative example presented 
in Section 4 shows that good control system performance can be obtained by 
applying the suggested algorithm. Section 5 concludes the paper. 

2 One Class of Fuzzy Logic Control Systems 
A fuzzy logic control system consists of a process and a fuzzy logic controller as 
shown in Figure 1. Let nX R⊂  be a universe of discourse. The controlled 
process is accepted to be characterized by the class of single-input n-th order 
nonlinear system modelled by the state-space equations in (1): 
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where: X∈x , 1 2[ ... ]T
nx x x=x  is the state vector, n IN∗∈ , 

1 2[ ... ]T
nx x x=x& & & & is the derivative of x  with respect to the time variable t, 

( ) [ ( ) ( ) ... ( )]21
Tf f fn=f x x x x and ( ) [ ( ) ( ) ... ( )]1 2

Tb b bn=b x x x x  are 

functions describing the dynamics of the process, u is the control signal fed to the 
process, obtained by the weighted-sum defuzzification method for T-S FLCs. 
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Figure 1 
Fuzzy logic control system structure 

The FLC consists of  r fuzzy rules. The i-th IF–THEN rule in the fuzzy rule base 
of the FLC, referred to as Takagi-Sugeno fuzzy rule, has the following expression: 

Rule i: IF xi is ,1iX%  AND … AND xn is ,i nX%  THEN ( )u u xi= , 1,i r= , 

, 2r N r∈ ≥ , (2) 

where Xi1, Xi2 … Xin are fuzzy sets that describe the linguistics terms (LTs) of 
input variables, ( )iu u x= is the control output of rule i, and the function AND is a 

t-norm. ui can be a single value or a function of states vector, ( )x t . Each fuzzy 

rule generates a firing degree [ ]0,1 , 1, 2,..,i riα ∈ = , according to (3): 

,1 ,2 ,1 2min( ( ), ( ),...,  ( )).( )
i i i ni nX X Xx x xα μ μ μ=x % % %  (3) 

It is assumed that for any x  belonging to the input universe of discourse, X , there 
exists at least one iα  among all rules that is not equal to zero. 

The control signal u, which must be applied to the process, is a function of iα  and 

iu . By applying the weighted-sum defuzzification method, the output of the FLC is 
given by: 

1

1

.

r

i i
i

r

i
i

u
u

α

α

=

=

=
∑

∑
 (4) 

Definition 1: For any input 0x X∈ , if the firing degree ( )0i xα  corresponding 
to fuzzy rule i is zero, this fuzzy rule i is called an inactive fuzzy rule for the 
input 0x ; otherwise, it is called an active fuzzy rule. 

state variables 
(x1, x2, …, xn) 

outputs y(t) u(t)reference input r FLC PROCESS

initial conditions x(t0)
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It should be noted that with 0x x= , an inactive fuzzy rule will not affect the 
controller output ( )0u x . Hence (4) can be rewritten so as to consider all active 
fuzzy rules only, 
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Definition 2: An active region of a fuzzy rule i is defined as a set 
( ){ }0A

i iX X α= ∈ ≠x x . 

3 Stability Analysis of Fuzzy Control Systems 
Controlling Nonlinear Processes 

The stability analysis theorem presented here is based on LaSalle’s invariant set 
principle called also global invariant set theorem and referred in [9]. The premise 
of the stability criterion in this paper is that, if the control output of each rule to 
fulfil the same conditions (presented in the next Theorem), the overall system will 
be stable ISL. The theorem ensures sufficient stability conditions for the fuzzy 
control systems with the structure described in Section 2. This Section is focused 
on Theorem 1 that can be expressed also as a useful stability analysis algorithm. 

Let : nV R R→ , ( ) 0, 0V > ∀ ≠x x  be a scalar function with continuous first-order 

partial derivatives. The time derivative of ( )V x  along the open-loop trajectory (1) 
is given by: 
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where: 

( ) ( )
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i i
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∂∑x x  (7) 

and: 
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∂∑x x  (8) 
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Now, we define: 

( ){ }0 0B X B= ∈ =x x , (9) 

( ){ }0B X B+ = ∈ >x x , (10) 

( ){ }0B X B− = ∈ <x x . (11) 

The main result of this paper is given by the following Theorem: 

Theorem 1: Let the fuzzy control system consisting of the T-S FLC described in 
Section 2 and the nonlinear process with the state-space equations (1) with 0=x  
an equilibrium point. If there exists a function :V X R→ , ( ) 0, 0V > ∀ ≠x x  with 
continuous first-order partial derivatives and: 

1 ( ) 00,  F B≤ ∀ ∈x x , 

2 ( ) ( )
( )i

F
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≤ −

x
x

x
 for A

iX B+∈x I  and ( ) ( )
( )i

F
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B
≥ −

x
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x
 for A

iX B−∈x I , 

1,i r= , 

3 the set ( ){ }0S X V= ∈ =x x&  does no contain any state trajectory of the 

system except the trivial trajectory ( ) 0t =x  for 0t ≥ , 

then the fuzzy control system is globally asymptotically stable ISL at the origin. 

Proof 

Further on, we will prove that the derivative of V with respect to time, V& , is 
negative semi-definite in terms of employing (1) in order to obtain the closed-loop 
system structure. 

Consider an arbitrary input X∈0x . Then three cases will be considered as 
follows. 

Case 1: If 0A
iX B+∈ ≠0x I  then ( )0B x  is strictly positive. From the condition 

two of Theorem 1 it results that: 
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Case 2: If 0A
iX B−∈ ≠0x I  then ( )B 0x  is strictly negative. From the condition 

two of Theorem 1 it results that: 
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Therefore, ( ) ( )
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Case 3: If 0
0 B∈x . In this case we have, from condition 3 of Theorem 1, that 

( ) 0F ≤0x . Therefore: 

( ) ( ) ( ) ( ) ( ) 00,V F B u F B= + = ≤ ∀ ∈0 0 0 0 0 0x x x x x x& . (16) 

From above three cases one may conclude that ( ) 0,V X≤ ∀ ∈x x& . 

Summarizing, V& is negative semi-definite. 

Condition 3 of theorem ensures the fulfilment of LaSalle’s invariant set principle. 
Both the condition of regarding the sign of V&  and the condition 3 satisfy the 
conditions from LaSalle’s global invariant set theorem. Therefore, the equilibrium 
point at the origin is globally asymptotically stable. The proof is now complete ■ 

The above stability theorem ensures sufficient stability conditions regarding the 
accepted class of fuzzy control systems described briefly in Section 2. 

Theorem 1 proves that if the Lyapunov function is negative semi-definite in the 
active region of each fuzzy rule then the overall system will be asymptotically 
ISL. 
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3.1 The Stability Analysis Algorithm 

The stability analysis algorithm ensuring the stability of the class of fuzzy logic 
control systems considered in Section 2 is based on Theorem 1. It consists of the 
following steps: 

1 Determine the state-space equations of the nonlinear process, 

2 Determine the membership function of the LTs in the T-S FLC structure, 

3 Determine the premise of each fuzzy rule, 

4 Set the V  function, calculate its derivative and the expression of the 
functions ( )F x  and ( )B x  and the sets 0B , B+  and 0B  as well, 

5 If ( ) 00,F x x B≤ ∀ ∈ then go to step 6. Else go to step 4. 

6 For each fuzzy control rule i determine iu  such that ( ) ( )
( )i

F
u

B
≤ −

x
x

x
 for 

A
iX B+∈x I  and ( ) ( )

( )i

F
u

B
≥ −

x
x

x
 for A

iX B−∈x I , 1,i r= , 

7 Check that the set ( ){ }0X VS ∈ == x x&  does not contain any state 
trajectory of the system except the trivial one, ( ) 0t =x  for 0t ≥ . 

4 Design Example 

This Section presents an example that deals with one chaotic Lorenz system to be 
controlled by a Takagi-Sugeno FLC. Modern discussions of chaos are mainly 
based on the works about the Lorenz attractor. The Lorenz equation is commonly 
defined as three coupled ordinary differential equations expressed in (17) to model 
the convective motion of fluid cell, which is warmed from below and cooled from 
above: 

( ) ( ),   ,   dx dy dzy x x z y xy z
dt dt dt

σ ρ β= − = − − = − , (17) 

where the three parameters , , 0σ ρ β >  are called the Prandtl number, the 
Rayleigh number, and a physical proportion, respectively. These constants 
determine the behaviour of the system and these three equations exhibit chaotic 
behaviour i.e. they are extremely sensitive to initial conditions. A small change in 
initial conditions leads quickly to large differences in corresponding solutions. 
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The classic values used to demonstrate chaos are 10σ =  and 8
3

β = . Let 

[ ] [ ] [ ]40, 40 40, 40 40, 40X = − × − × − . 

4.1 Design of Stable Fuzzy Logic Control System 

The algorithm presented in Section 3 will be applied in the sequel in order to find 
the values of iu  for which the system (17) can be stabilized by the above 
described T-S FLC. A similar fuzzy logic control system has been designed in 
[10] but involving Barbashin-Krasovskii’s theorem. 

Step 1: The design of the fuzzy logic control system with TS FLC starts with 
rewriting the ordinary differential equation (17) in the following form representing 
the state-space equations of the controlled process with x1 = x, x2 = y and x3 = z: 

( )
( ) ( )

2 1

1 3 2

1 2 3

1
0 ,   
0

x x
x x x u t

x x x

σ
ρ

β

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − − + =⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

0 0x x x& . (18) 

Step 2: The first two equations are considered in the T-S FLC design. The 
fuzzification module of T-S FLC is set according to Figure 2 showing the 
membership functions that describe the LTs of the linguistic variables of 1x and 

2x . The LTs representing Positive, Zero and Negative values are noted by P, Z 
and N, respectively. The inference engine employs the fuzzy logic operator AND 
modelled by the min t-norm. 

 

Figure 2 
Membership functions of x1 and x2 

Step 3: The inference engine is assisted by the complete set of fuzzy control rules 
illustrated in Table 1. 
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Step 4: Let ( ) ( )2 2 2
1 2 3

1
2

V x x x= + +x  be a Lyapunov function candidate, which is a 

continuously differentiable positive function on the domain X. The time derivative 
of V along the trajectories of the system (18) is given by: 

( ) ( )2 2 2
1 2 3 1 2 1V x x x x x x uσ β σ ρ= − − − + + +x& . (19) 

Then (19) results in ( ) ( )2 2 2
1 2 3 1 2F x x x x xσ β σ ρ= − − − + +x , ( ) 1B x=x  and 

( ){ }0 3
2 30B x x R= ∈ , ( ){ }3

1 2 3 1 0B x x x R x+ = ∈ > , 

( ){ }3
1 2 3 1 0B x x x R x− = ∈ < . 

Step 5: Since ( ) 00,F B≤ ∀ ∈x x , the step 6 continues is applied. 

Step 6: Further on, we will analyze each fuzzy control rule. 

For rule 1: x1 is P, x2 is P and [ ] ( ] ( ] [ ]1 40,40 0,40 0, 40 40, 40AX B+× − = × × −I , 

1
AX B− = ∅I . In this case we must have that 

( ) ( )
( ) ( )

2 2
2 3

1 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≤ − = + − +
x

x
x

. From this inequality we set 

( ) ( )1 2u x σ ρ= − +x . 

For rule 2: x1 is N, x2 is N and [ ] =−× −BX A I40,402  

[ ) [ ) [ ]40,400,400,40 −×−×−= , 2
AX B+ = ∅I . In this case we must have that 

( ) ( )
( ) ( )

2 2
2 3

2 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≥ − = + − +
x

x
x

. From this inequality we set 

( ) ( )2 2u x σ ρ= − +x . 
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For rule 3: x1 is P, x2 is N and [ ] ( ] [ ) [ ]3 40,40 0,40 40,0 40, 40AX B+× − = × − × −I , 

3
AX B− = ∅I . In this case we must have that 

( ) ( )
( ) ( )

2 2
2 3

3 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≤ − = + − +
x

x
x

. From this inequality we set 

( )3 1u = −x . 

For rule 4: x1 is N, x2 is P and [ ] [ ) ( ] [ ]4 40,40 40,0 0,40 40,40AX B−× − = − × × −I , 

4
AX B+ = ∅I . In this case we must have that 

( ) ( )
( ) ( )

2 2
2 3

4 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≥ − = + − +
x

x
x

. From this inequality we set 

( )4 1u =x . 

For rule 5: x1 is P, x2 is Z and [ ] ( ] ( ) [ ]5 40,40 0,40 10,10 40,40AX B+× − = × − × −I , 

5
AX B− = ∅I . In this case we must have that 

( ) ( )
( ) ( )

2 2
2 3

5 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≤ − = + − +
x

x
x

. From this inequality we set 

( ) ( )
2 2
2 3

5 1
1

10
x x

u x
x
β

σ σ ρ
+

= + − +x . 

For rule 6: x1 is N, x2 is Z and 
[ ] [ ) ( ) [ ]6 40,40 40,0 10,10 40, 40AX B−× − = − × − × −I , 6

AX B+ = ∅I . In this case 

we must have that ( ) ( )
( ) ( )

2 2
2 3

6 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≥ − = + − +
x

x
x

. From this 

inequality we set ( ) ( )
2 2
2 3

6 1
1

10
x x

u x
x
β

σ σ ρ
+

= + + +x . 

For rule 7: x1 is Z, x2 is P. Two cases should be considered: 

a. [ ] [ ) ( ] [ ]7 40,40 10,0 0,40 40,40AX B−× − = − × × −I . In this case we must have 

that ( ) ( )
( ) ( )

2 2
2 3

7 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≥ − = + − +
x

x
x

. 

b. [ ] ( ] ( ] [ ]7 40, 40 0,10 0,40 40,40AX B+× − = × × −I . In this case we must have that 

( ) ( )
( ) ( )

2 2
2 3

7 1 2
1

F x x
u x x

B x
β

σ σ ρ
+

≤ − = + − +
x

x
x

. 

From both cases, set ( ) ( )7 2u x σ ρ= − +x . 
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For rules 8 and 9 a similar reasoning to that of rule 7 swill be applied with the 
result ( ) ( ) ( )8 9 7u u u= =x x x . 

Step 8: We note that ( ) ( ) ( )i iV F B u= +x x x&  and ( ){ }0i iS X V= ∈ =x x& . Use (4) 

result that ( )
( ) ( )

( )
1

1

n

i i
i

n

i
i

V
V

α

α

=

=

=
∑

∑

x x
x

x

&

& . We prove now that 
1

n

i
i

S S
=

⊆U . We suppose 

that there exists 0 S∈x . Then: 

( )
( ) ( )

( )
1

1

0 0

n

i i
i

n

i
i

V
V

α

α

=

=

= ⇒ =
∑

∑
0

x x
x

x

&

& ( ) ( )
1

0
n

i i
i

Vα
=

⇒ =∑ x x& . (20) 

It is important to highlight that the interpretation of (20) is that there exists at least 

one rule index i such that ( ) 0iV =x& . Therefore 
1

n

i
i

S S
=

⊆U . Since iS = ∅  for 

1,8i =  and { }9 0S = , the result is { }0S = . Thus, ( ){ }0X VS ∈ == x x&  does not 
contain any state trajectory of the system except the trivial one, ( ) 0t =x for 0t ≥ . 
Concluding, due to Theorem 1 it results that the system composed by this T-S 
FLC and the Lorenz process described by (18) is globally asymptotically stable 
ISL at the origin. 

4.2 Simulation Results 

 
Figure 3 

State variable x1 versus time of Lorenz chaotic system without FLC (a) and with FLC (b) 
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Figure 4 
State variable x2 versus time of Lorenz chaotic system without FLC (a) and with FLC (b) 

 

Figure 5 
State variable x3 versus time of Lorenz chaotic system without FLC (a) and with FLC (b) 

 

Figure 6 
2D phase portraits of Lorenz system without control (a) and with FLC (b) 
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Considering the values of process parameters 10σ = , 28ρ = , 8
3

β = , the initial 

state ( )1 0 1x = , ( )2 0 1x = −  and ( )3 0 1x = , the responses of 1x , 2x and 3x  versus 
time in the closed-loop system are illustrated in Figures 3 to 7. 

 

Figure 7 
3D phase portrait Lorenz system without control (a) and with FLC (b) 

Conclusions 

A new approach to the globally asymptotically stability analysis of fuzzy control 
systems employing T-S FLCs dedicated to a class of nonlinear processes has been 
introduced. The new stability analysis approach is different to Lyapunov’s 
theorem in several important aspects and allows more applications. In particular, it 
is well-suited to controlling processes where the derivative of the Lyapunov 
function candidate is not negative definite, therefore applying the LaSalle’s 
invariant set principle to nonlinear processes controlled by T-S FLCs can be 
applied to a wide area of nonlinear dynamic systems. Using the proposed stability 
analysis approach makes the inserting of a new fuzzy rule (with the index r+1) 
become very easy because this needs only the fulfilment of the condition 

( ) 01V xr ≤+
& . 

The stability analysis algorithm proposed in this paper, based on Theorem 1, 
guarantees sufficient stability conditions for the fuzzy control systems. This 
algorithm can result in a design method, which is advantageous because the 
stability analysis decomposed to the analysis of each fuzzy rule. Therefore, the 
complexity of system analysis is reduced drastically. 

This paper has shown, by the Lorenz system, how the stability analysis algorithm 
can be applied to the design of a stable fuzzy control system for a nonlinear 
process. Our stability approach can be applied also in situations when the system 
has an equilibrium point different to the origin and / or the reference input of the 
fuzzy control system is non-zero by appropriately defined state transforms. 
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Future research will be focused on increasing the area of applications [11-16]. But 
this must be accompanied by the derivation of transparent design methods for 
low-cost fuzzy logic controllers. 
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