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Abstract: In this paper we propose an approximation of the class of continuous nilpotent 
operators. The proof is based on one hand the approximation of the cut function, and on the 
other hand the representation theorem of operators with zero divisors. The approximation 
is based on sigmoid functions which are found to be useful in machine intelligence and 
other areas, too. The continuous nilpotent class of operators play an important role in fuzzy 
logic due to their good theoretical properties. Besides them this operator family does not 
have a continuous gradient. The main motivation was to have a simple and continuously 
differentiable approximation which ensures good properties for the operator. 
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1 Introduction 

The nilpotent operator class (see e.g. [1], [2], [3]) is commonly used for various 
purposes. In the following we will consider only the continuous nilpotent 
operators. In this well known operator family the cut function (denoted by [�]) 
plays a central role. We can get the cut function from x by taking the maximum of 
0 and x and then taking the minimum of the result and 1. One can relax the 
restrictions of 0 and 1 to get the concept of the generalized cut function. 

Definition 1 Let the cut function be 
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Let the generalized cut function be 
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where a,b∈ R and a < b. 

Remark. We will use [·] for parentheses, too, e.g. f [x] means f ([x]). 

As it can be seen from the representation theorem of the nilpotent class, which we 
will show later, all nilpotent operators are constructed using the cut function. The 
formulas of the Lukasiewicz conjunction, disjunction, implication and negation 
are the following: 
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Figure 1 

The truth tables of the Lukasiewicz conjunction, disjunction and implication 
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Figure 2 
Two generalized cut functions 

The truth tables of the former three can be seen on figure 1. The Lukasiewicz 
operator family used above has good theoretical properties. These are: the law of 
non-contradiction (that is the conjunction of a variable and its negation is always 
zero) and the law of excluded middle (that is the disjunction of a variable and its 
negation is always one) both hold, and the residual and material implications 
coincide. These properties make these operators to be widely used in fuzzy logic 
and to be the closest one to classic Boolean logic. Besides these good theoretical 
properties this operator family does not have a continuous gradient. So for 
example gradient based optimization techniques are impossible with Lukasiewicz 
operators. The root of this problem is the shape of the cut function itself. 

2 Approximation of the Cut Function 

A solution to above mentioned problem is a continuously differentiable 
approximation of the cut function, which can be seen on figure 3. In this section 
we’ll construct such an approximating function by means of sigmoid functions. 
The reason for choosing the sigmoid function was that this function has a very 
important role in many areas. It is frequently used in artificial neural networks, 
optimization methods, economical and biological models. 
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Figure 3 

The cut function and its approximation 

2.1 The Sigmoid Function 

The sigmoid function (see figure 4) is defined as 
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where the lower index d is omitted if 0. 
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Figure 4 

The sigmoid function with parameters d=0 and β=4 

 
Figure 5 

The first derivative of the sigmoid function 

Let us examine some of its properties which will be useful later: 

• its derivative can be expressed by itself (see figure 5): 
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• its integral has the following form: 

 ).(ln1 )( )()( xdxx dd
ββ σ

β
σ −−=∫  (6) 

Because the sigmoid function is asymptotically 1 as x tends to infinity, the integral 
of the sigmoid function is asymptotically x (see figure 6). 
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Figure 6 

The integral of the sigmoid function, one is shifted by 1 

2.2 The Squashing Function on the Interval [a,b] 

In order to get an approximation of the generalized cut function, let us integrate 
the difference of two sigmoid functions, which are translated by a and b (a < b), 
respectively. 
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After simplification we get the squashing function on the interval [a,b]: 

Definition 2 Let the interval squashing function on [a,b] be 
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The parameters a and b affect the placement of the interval squashing function, 
while the β parameter drives the precision of the approximation. We need to prove 
that )()(

, xS ba
β  is really an approximation of the generalized cut function. 

Theorem 3 Let a,b∈R, a < b and β∈R+. Then 
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and )()(
, xS ba
β is continuous in x, a, b and β. 

Proof. It is easy to see the continuity because )()(
, xS ba
β  is a simple composition of 

continuous functions and because the sigmoid function has a range of [0,1] the 
quotient is always positive. 

In proving the limit we separate three cases, depending on the relation between a,b 
and x. 

• Case 1 (x < a < b): Since 0)( <− axβ , so 0)( →−axeβ  and similarly 

0)( →−bxeβ . Hence the quotient converges to 1 if ∞→β , and the 
logarithm of one is zero. 

• Case 2 (a ≤ x ≤ b): 
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We transform the nominator so that we can take the axe − out of the limes. In 
the nominator )( axe −−β  remained which converges to 0 as well as )( bxe −β  
in the denominator so the quotient converges to 1 if ∞→β . So as the 
result, the limit of the interval squashing function is )/()( abax −− , 
which by definition equals to the generalized cut function in this case. 
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• Case 3 (a < b <x): 
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We do the same transformations as in the previous case but we take 
bxe − from the denominator, too. After these transformations the remaining 

quotient converges to 1, so 
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Figure 7 

On the left image: the interval squashing function with an increasing β parameter (a=0 and 
b=2). On the right image: the interval squashing function with a zero and a negative β 

parameter 



Acta Polytechnica Hungarica Vol. 2, No. 1, 2005 

 – 53 –

On figure 7 the interval squashing function can be seen with various β parameters. 
The following proposition states some properties of the interval squashing 
function. 

Proposition 4 
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As an another example, the Lukasiewicz conjunction is approximated with the 
interval squashing function on figure 8. 

 
Figure 8 

The approximation of the Lukasiewicz conjunction [x+y-1] with β values 1,2,8 and 32 

For further use, let us introduce an another form of the interval squashing 
function’s formula. Instead of using parameters a and b which were the "bounds" 
on the x axis, from now on we’ll use a and δ, where a gives the center of the 
squashing function and where δ gives its steepness. Together with the new 
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formula we introduce its pliant notation.  

Definition 5 Let the squashing function be  
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where a∈R and δ∈R+. 

If the a and δ parameters are both 1/2 we will use the following pliant notation for 
simplicity: 

 ),()(
21,21 xSx β

β
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which is the approximation of the cut function. 

 
Figure 9 

The meaning of 
βδ xa <  

The inequality relation in the pliant notation refers to the fact that the squashing 
function can be interpreted as the truthness of the relation a < x with decision level 
1/2, according to a fuzziness parameter δ and an approximation parameter β (see 
figure 9). 

The derivatives of the squashing function can be expressed by itself and sigmoid 
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functions: 
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2.3 The Error of the Approximation 

The squashing function approximates the cut function with an error. This error can 
be defined in many ways. We have chosen the following definition. 

Definition 6 Let the approximation error of the squashing function be 
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where β > 0. 

Because of the symmetry of the squashing function δε δβ <−= 01 , see 

figure 9. 

The purpose of measuring the approximation error is the following inverse 
problem: we want to get the corresponding β parameter for a desired βε error. We 

state the following lemma on the relationship between βε and β. 

Lemma 7 Let us fix the value of δ. The following holds for eb. 
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So the error of the approximation can be upper bounded by 
β
1

⋅c , which means 

that by increasing parameter β, the error decreases by the same order of 
magnitude.  

2.4 The Approximation of the Nilpotent Operator Class 

The following theorems state that any continuous t-norm having zero divisors can 
be representated by the Lukasiewicz t-norm. In other words any nilpotent t-norm 
can be constructed using the Lukasiewicz t-norm and an appropriate 
automorphism of the unit interval. By these theorems the approximation of the cut 
function and the Lukasiewicz t-norm can be extended to the approximation of the 
whole class of continuous nilpotent operators. 

We give the theorems using a different notation as stated in [4], especially for the 
cut function. By using [⋅] in the expressions, both the t-norm and the t-conorm 
case can be notated in the same way. The following lemma is needed for proving 
the theorems. 

Lemma 8 If c is a continuous t-norm such that c(x,n(x)) = 0 holds for all x∈[0,1] 
with a strict negation n then c is Achimedean. 

Proof. Suppose that c is not Archimedean. That is, there exists x∈(0,1) such that 
c(x,x) = x. If x ≤ n(x) then x = c(x,x) ≤ c(x,n(x)) = 0, a contradiction since 
x∈(0,1). If x > n(x) then, since c is a continuous function, there exists y ≤ x such 
that n(x) = c(x,y). Then we have 

0  n(x))c(x,  y))c(x,c(x,  y)x),c(c(x,  y)c(x,  n(x) ===== , 

again a contradiction since x∈(0,1). Thus our proposition is proved.  

Theorem 9 A continuous t-norm c is such that c(x,n(x))=0 holds for all x∈[0,1] 
with a strict negation n if and only if there exists an automorphism f of the unit 
interval such that 

 [ ]1)()(),( 1 −+= − yfxffyxc  (23) 

and 

 ( ).)(1)( 1 xffxn −≤ −  (24) 

Proof. (Necessity) According to the previous proposition, c is Archimedean. Thus 
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there exists a generator cf of c such that ( ))()(),( )1( yfxffyxc ccc += −  (where 
)1(−

cf is the pseudoinverse of cf ) with ∞<)0(cf . Define 
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Thus f is an automorphism of the unit interval. From (25) we have 
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Using the above generator functional form of c(x,y) we can go on as 
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On the other hand, c(x,n(x)) = 0 is equivalent to 1))(()( ≤+ xnfxf , whence 

we obtain the inequality ( ))(1)( 1 xffxn −≤ − . 

Proof of sufficiency is immediate.  

We give the theorem for t-conorms without proof since it is very similar to the 
above mentioned. 

Theorem 10 A continuous t-conorm d satisfies condition d(x,n(x))=1 for all 
x∈[0,1] with a strict negation n if and only if there exists an automorphism g  of 
the unit interval such that 

 [ ])()(),( 1 ygxggyxd += −  (26) 

and 

 ( ).)(1)( 1 xggxn −≥ −  (27) 

Using the above theorems we can state the following. 

Theorem 11 Every continuous nilpotent t-norm and t-conorm can be 
approximated by the squashing function in the following way: 
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Proof. Because
β

x approximates [x] for all x if ∞→β , the statement of the 

theorem is obvious from Theorem 9 and 10. 

Conclusion 

In this paper first we reviewed the cut function, which is the basis of the well 
known nilpotent operator class. This cut function is piecewise linear, hence it can 
not be continuously differentiated. We have constructed an approximation of the 
cut function (the squashing function) by means of sigmoid functions with good 
analytical properties, for example fast convergence and easy calculation. We have 
shown that all nilpotent operators can be approximated this way. 
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