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Abstract. Source-to-source transformations play crucial role in weaving multiple aspects of 
computation in aspect languages. Except that expressing imperative programs in the 
uniform form of expressions simplifies these transformations, this form is useful from the 
viewpoint of recognizing different aspects of computation at any level of program structure. 
In this paper we present the relation between imperative language and PFL – a process 
functional language, which manipulate environment variables in a side-effect manner, still 
preserving a purely functional principle based on evaluating expressions. Using an 
example of an imperative structured program, we will show the semantical equivalence of 
process functional and imperative programs. As a result, fine grained PFL form for picking 
out potential join points in imperative programs is obtained. 

Keywords. Programming paradigms, programming languages, side effects, process 
functional language, aspect oriented programming. 

1 Introduction 
Purely functional programs [4] support equational reasoning – the program 
synthesis and the proof of program correctness [4, 16, 17]. However, the complex 
systems are not functional [20]. They are executed using I/O, exceptions, interrupt 
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handling, channel communication, etc. depending on the application to which they 
are proposed. The stateful computation/algorithm is such in which the state is 
significant. Since the state plays significant role in systems, an imperative 
language seems to be the best alternative for describing their functionality. On the 
other hand, using functional programming paradigm, a program is more tightly 
bound to the use of mathematical methods and more appropriate to 
transformations needed when weaving multiple aspects in aspect languages 
[2,3,7,15,23]. Let us introduce three approaches used in functional languages, able 
to express stateful computation. Using a functional language, the mechanism for 
updating a set of memory cells is required.  

In Standard ML [5], the variable environment is used. For example, v is a memory 
cell in SML definition val v = ref 5. The value of variable v is accessed using 
operation ! : a ref → a in the form !v. The assignment v := !v + 1 increments the 
value of cell v by one. In SML, assignments are expressions of unit type and they 
may be used elsewhere in expressions by a programmer, i.e. explicitly as it is in an 
imperative language. 

A pure, lazy functional language Clean [1] uses linear types again to perform the 
stateful computation, like Haskell. The asterisk in a type *World designates that 
the type World is linear type. Since each function (process) may be of the type 
*World → *World, no single abstraction of monad is necessary to perform stateful 
computation. 

No assignments are available to a programmer in Glasgow Haskell [19] – a purely 
functional language. They are hidden in application of processes, called state 
transformers [20]. The single abstraction of monads – mutable abstract type [22] is 
used to update the values of linear types, i.e. such that are accessed by a single 
pointer. 

A monad is a triple (M, unitM, bindM), where M is a linear type, and the 
operations unitM and bindM are of the type:  

unitM :: a → M a       and         bindM :: M a → (a → M b) → M b 

In contrast to SML, Haskell is not environment-based language. The disadvantage 
of monadic approach is (at least from the viewpoint of software engineering) that 
memory cells are invisible to a user. 

Seemingly, we may decide either to hide variable environment not using 
assignments, or, making environment visible, we must use assignments explicitly. 
However, process functional paradigm is based on preventing assignments, at the 
same time making variable environment visible to a programmer. PFL – an 
experimental process functional language [8, 9, 10, 11, 12, 13, 14], which we have 
developed in the past, is closely related to process functional paradigm. 

Syntactically, PFL is a reduced subset of Haskell language, extended in a uniform 
way to support object programming. Currently we have two generators from PFL - 
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a generator to Java and to Haskell languages. Originally, our aim was to develop a 
programming language, that is safe, in the sense that it manipulates the state by 
application of processes instead of assignments and, at the same time, it provides 
well-defined spatial information about memory data organization to a 
programmer. 

Considering aspect oriented programming methodology [2,3,7,15,23], it seems 
that PFL may used as a general implementation bridge for any target imperative 
language, supporting this multi-aspect approach to programming. In this paper, we 
present the relation between imperative structures of a simple but representative 
imperative language and process functional expressions. Providing the translation 
scheme P, and a simple imperative program expressing it in PFL, we prove 
informally the equivalence of process functional and imperative languages. 

The essence of PFL is introduced in section 1. A representative subset of an 
imperative language (omitting procedures and functions) is defined in section 2. In 
section 3 we present the translation scheme P which maps imperative programs to 
PFL form. An example of the simple imperative program, as well as its equivalent 
form in PFL, is introduced in section 4.  

Finally, in Conclusion, we summarize our results and briefly comment the 
directions of further research. We will use Bird‘s mathematical notation for PFL 
programs in this paper. 

2 The Essence of PFL 
In PFL, the assignments are performed by a process application implicitly [8]. The 
source form of a process definition (an equation designated by =) is seemingly 
purely functional. On the other hand, a variable environment is visible to a 
programmer in a process type definition (an equation designated by ::). 
Environment variables – memory cells – may be shared by two or more processes 
defined in the same scope. They are introduced as the attributes of the types of 
process arguments. There are no reference types in PFL. Each argument type (v T) 
introduces the variable v of the type T to the variable environment. Each function 
comprising at least one argument type in the form (v T) is a process. Except that, 
processes are functions defined in terms of unit types for arguments and/or values. 
Primitive and algebraic types are designated by identifiers starting with uppercase 
letters and the environment variables (memory cells) by identifiers starting with 
lowercase letters. It is just one exception from this rule, when the type T is a type 
variable. Then it is designated by single lowercase letter. For example (a a) 
means, that the first a is the environment variable and the second a is the type 
variable. The computational model for PFL based on control-driven data flow can 
be found in [9]. 
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As an introductory example, let process p is defined as follows: 

p :: a Int → b Int → Int 

p x y = x + y 

Then, the value of expression (p 2 3) is 5. Like the side effect of evaluation, the 
values of cells a and b (environment variables) will be a = 2 and b = 3. 

Now, suppose that the values of a, b are a = 2 and b = 3. 

Hence, the value of (p ()()) is 5 again, and the state of a and b (a = 2 and b = 3) 
remains unchanged. The arguments () are control (unit) values of unit types (). 

Provided that an argument is of process type (v T), then applying the process on a 
control value (or an expression that yields control value), the process value is 
evaluated using the current value having been stored in v before the process is 
applied. Control values do not affect the function of computation directly, 
nevertheless, the order, in which the expressions of unit types are evaluated, 
affects the state. Notice, that the processes (in contrast to functions) are evaluated 
eagerly, following the principle of causality: The value of a process is evaluated 
after the arguments are evaluated. The order, in which the arguments are 
evaluated, may affect the function of computation. That is why source process 
definitions are purely functional just seemingly. As an example, let us define the 
process q as follows: 

q :: a Int → a Int → Int 

q x y = x + y 

Evaluating (q 2 3), the result is 5, but the value assigned to variable a is either 2 or 
3, depending on whether q is applied first to 3 or to 2. If the arguments (that 
may be complex expressions not just simple constants, such 2 and 3 above) are 
evaluated in parallel, the state change is non-deterministic. Clearly, the definition 
of process q is purely functional just if we omit its type definition (marked by ::), 
otherwise not. On the other hand, possible nontransparency is evidently separated 
from the definition itself and it is shifted to the type definition. 

Let process r is defined as follows: 

r :: a Int → () 

r x = () 

The application (r (4 + 5)) evaluates the argument 9, which is assigned to a. The 
result is a control value () which does not allocate the stack at all. It may be 
noticed that PFL expression application (r (4 + 5)) corresponds to the assignment 
a := 4 + 5 in an imperative language. 

In the last introductory example, let process s is defined as follows: 
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s :: ()→ () 

s () = () 

Process s can  be applied to each expression of unit type, yielding control value, 
for example, such as (s (r (4+5))). Side effect is the same as for (r (4+5)), which 
yields control value (). This value is used as the argument of s. In PFL, the 
conception of data and control values is well balanced, not hiding them to a 
programmer. We will suppose evaluating PFL expressions in leftmost innermost 
order, to guarantee correct semantics for imperative control structures – statements 
of a sequential imperative language.  

3 An Imperative Language 
We will start with the syntactic domain of a simple imperative language, in which 
the program pr comprises variable declarations vd and block bl consisting of 
statement sequence, according to the Fig.1. A statement st may be assignment as, 
if statement if , or while statement wh. 
 

pr ::= vd bl 
vd ::= var v1 : T1 ; . . . vn : Tn; 
bl ::= begin st1 ; . . . ; stm end
st ::= as | if | wh 
as ::= v := e 
if ::= if e then blT else blF 
 | if e then blT 
wh ::= while e do bl 
Fig. 1: An imperative language 

The detailed syntax of expression e is not substantial for our purposes. In Fig.1, Tk 
are types, n is the number of variables (n ≥ 1), m is the number of statements (m ≥ 
1) of a block, and e is an expression. Instead of extended BNF form (st (; st)*) we 
rather express non-empty statement sequence by st1 ; . . . ; stm (m ≥ 1). Block blT 
of if statement is executed when the value of boolean expression e is true, and 
block blF is executed when e is false.  

4 Expressing Imperative Programs in PFL 
In this section we will present the scheme P for translation of imperative language 
in Fig. 1. For the purpose of simplicity, we will consider just variables declared in 
variable declarations vd are used in block bl. 

Program pr is equivalent to PFL expression P [  vd bl , such that: [ ]]
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P [  vd bl ]   = P [  bl  A [ [ ]]

[ ]

[ ]]

[ ]]

[ [ [ ]

]

where A = { v1 : T1 ; . . . vn : Tn } is the set of associations defined in variable 
declarations vd 

such that vk are used in bl. 

For example, the set of associations for imperative program in Fig. 2 is as follows: 

A = {x : Int, y : Int, s : Int} 

Expression e in an imperative language is equivalent to PFL expression P [  e ]  
Ae, as follows: 

P [  e  Ae = ep ()1 . . . ()r 

provided that v1, . . . , vr are (imperative) variables used in e, Ae = {v1 : T1 , . . . , vr : 
Tr}, such that Ae ⊂ A, and process ep is a new process defined as follows: 

ep :: v1 T1 → . . . → vr Tr → T 

ep x1 . . . xr = e[x1/v1, . . . , xr/vr] 

where T is a type of expression e, and its form e[x1/v1, . . . , xr/vr] means that in this 
expression are variables vk substituted by lambda variables xk. 

For example, let us consider the expression s + x on the right hand side of 
assignment 

s := s + x. This expression is translated using associations Ae = {x : Int, s : Int} 
into the application of a new PFL process, say sxp, in the form sxp () (), where that 
sxp is defined as follows: 

sxp :: s Int → x Int → Int 

sxp p q = p + q 

Block bl is equivalent to PFL expression P [  bl  A, as follows: 

P [  begin st1 ; . . . ; stm end ]  A  = blp P [  st] 1  A]] 1 . . . P [  stm ]  Am 

where the variables of associations Ai are used in statements sti. It holds A = A1 ∪ 
. . . ∪ Am. The new process blp applied in PFL expression above, is defined as 
follows: 

blp :: ()1 → . . . → ()m → () 

blp ()1 . . . ()m = () 

For example, if top-level block contains three assignments, one while statement 
and one write statement, then corresponding PFL definition of process blp is as 
follows: 
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blp :: ()→()→() →()→()→() 

blp () () () () () = () 

Statement st is equivalent to PFL expression P [  st ]  A, which is equal to PFL 
expressions for assignment, if statement, or while statement. 

[ ]

[ ]

[ ] [ ]]

[ ]

[ ]

[ ]

[ ] [ ]]

[ ]

[ ]

[ ] [ ]]

[ ]

[ ]]

Assignment as is equivalent to PFL expression P [  as ]  A as follows: 

P [  v := e  A = asp P [  e  A] e 

where the variables of associations Ae are used in expression e. It holds A = {v : 
T} ∪ Ae. The new process asp is defined as follows: 

asp :: v T → () 

asp x = () 

and P [  e ]  Ae is a PFL expression. 

If statement if is equivalent to PFL expression P [  if ]  A, as follows: 

P [  if e then blT else blF ]  A = ifp 

The new process ifp is defined as follows: 

ifp :: () 

ifp  | P [  e ]  Ae  = P [  blT  AT 

| otherwise  = P [  blF ]  AF 

where A = Ae ∪ AT ∪ AF. 

If statement without blF  block is expressed as follows: 

P [  if e then blT ]  A = ifp 

In this case the new process ifp is defined as follows: 

ifp :: () 

ifp  | P [  e ]  Ae  = P [  blT  AT 

| otherwise  = () 

where A = Ae ∪ AT. 

While statement wh  is equivalent to PFL expression P [  wh ]  A, as follows: 

P [  while e do bl  Ae = whp () 

New process whp is defined as follows: 
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whp :: ()→() 

whp () | P [  e ]  A[ ] [ ]e  = whp P [  bl ]  Aw 

| otherwise  = () 

where A = Ae ∪ Aw. 

PFL form for boolean expression e in if and while statements is the same as for 
general expresions e being shown above. 

5 An Example 
As an example, let us consider a simple imperative program in Fig. 2, which reads 
two integers x and y, and computes the sum s of absolute values in the range 

(x . . . y). 

It is supposed, that primitive function read (referentially non-transparent) and 
primitive write, of the types read :: Int, and write :: Int → (), are built-in. 
 

var x, y, s : integer; 
begin 
   x := read; y := read; s := 0;
   while x <= y do begin 
      if x > 0 then begin 
         s := s + x 
      end else begin 
         s := s − x 
      end; 
      x := x + 1 
   end; 
   write(s) 
end 
Fig. 2: Imperative program 

As we will see, except that the basic association is A = {x : Int, y : Int, s : Int}, 
after expressing the program in PFL form, each process uses a subset of this 
association, which is defined by its type definition. 

Since the values of variables s, x and y are used in expressions, the accessing 
processes s, x and y (for the purpose of simplicity we use for them the same names 
as for variables) are identities, defined in Fig. 3a. 
 

s :: s Int → Int 
s p = p 
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x :: x Int → Int
x p = p 
 
y :: y Int → Int
y p = p 

Fig. 3a: Accessing processes 

As we will see below, the weakness of imperative programs is that the argument 
of accessing processes is just unit value (), not a complex expression evaluated to 
unit value. The values in environment variables s, x, and y are accessed using 
applications s(), x(), and  y(), respectively. 

The top level block of a program in Fig. 2 consists of the sequence of three 
assignments, followed by two statements (while and write). So, we can integrate 
the transformation of block, sequence and assignment combining all of them by 
the definition of single process bsa – block-sequence-assignment compound 
process. Since different compound process expresses the body of while statement  
they are designated by different names: bsaA for the top level block, and bsaB for 
the while block in Fig. 3b. On the other hand, both blocks in if statement consist of 
assignment to the same variable s. Such blocks can be integrated using one 
process bsaC for both blocks, as shown in Fig. 3b. 
 

bsaA :: x Int → y Int → s Int → () → () → ()
bsaA  p q r ()() = () 
 
bsaB ::()→ x Int → () 
bsaB  () p = () 
 
bsaC :: s Int → () 
bsaC  p  = () 

Fig. 3b: Compound processes 

Now we are ready to built up the structure of our program in Fig. 2 in the whole, 
defining while process using the scheme for while statement, if process using the 
scheme for if statement and finally, main as a constant expression – the 
application of bsaA, yielding unit value, as can be seen in Fig. 3c. 
 

while :: () → () 
while ()  | x()<= y() = while ( bsaB  if   (x() + 1))

| otherwise  = () 
 
if  :: () 
if  | x() > 0  = bsaC (s() + x()) 

| otherwise = bsaC (s() − x()) 
 
main  :: () 
main = bsaA read read 0 (whp ()) (write (s()) ) 

Fig. 3c: The structure of the program 
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The PFL program in Figures 3a, 3b, and 3c including built-in read and write, is 
semantically equivalent to the imperative program in Fig. 2; the evaluation of 
main is the same as the execution of program in Fig. 2. 

Conclusions 

Using PFL, a program is expressed without assignments and statement sequences, 
preserving at the same time the visibility of environment variables – memory cells. 
An imperative computation is performed by the evaluation of an expression with 
side effects. 

We have illustrated structured imperative style of programming, building PFL 
program in botton-up manner. It is not to argue that process functional 
programming is better than when an imperative language is used. But we can see 
the following facts. First, exploiting the application dependency in imperative 
languages is poor, if any. Omitting functions, lambda variables (designated by p, 
q, and r in our example in Fig. 3a, 3b, and 3c) are not used in expressions at all. 
Second, the use of variables in imperative languages is far less disciplined, as 
when they are associated with PFL processes in their type definitions and shared 
by process applications. 

The arguments of processes in this paper are supposed to be evaluated sequentially 
and eagerly. Essentially, this is the simpliest way how to guarrantee the required 
degree of determinism in computation. On the other hand, the application 
dependency is other alternative, exploited using monads [22]. Although this is 
over the scope of this paper, monadic programming style is not excluded using 
process functional language. Using monadic style in PFL, in contrast to Haskell, 
memory cells remain still visible, as we have shown in [12]. 

Considering multi-paradigmatic approaches, such as combining logic and 
functional programming [18, 21] or object oriented and logic programming in 
aspect programming methodology, the aim of both is to increase the semantical 
power of the language, using less or more uniform language syntax. Especially in 
aspect programming, the underlying language such as Java in AspectJ [7] 
determines the transparency of programs, because Java constructs are used in 
pointcut designators. Except that, renaming a metod in an original module after 
adding aspect module may affect the semantics the program inappropriately.  

As has been shown, PFL form of programs allows (and requires) to designate the 
structures and substructures of a program systematically. Then we may think 
about more fine grained aspects, as those when an imperative language is used. In 
the past, we have PFL-to-Java and PFL-to-Haskell generators developed. The 
subject of our current research is integrating aspect and process functional 
paradigm of programming. In this framework, with respect of complexity of 
software systems and the need to precede their behavior [6], we are interested 
especially in methods for replacing the „programming style“ (in which PFL 
implementation structures are named) by the „specification style“ in which they 
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are derived [16, 17] and affected by new static and dynamic aspects, in the way 
that run-time can be still monitored, corrected, profiled and optimized according to 
user requirements. 
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