
Acta Polytechnica Hungarica Vol. 1, No. 2, 2004

 – 113 –

Semantical Equivalence of Process Functional
and Imperative Programs

Ján Kollár
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
Jan.Kollar@tuke.sk

Valerie Novitzká
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
Valerie.Novitzka@tuke.sk

Abstract. Source-to-source transformations play crucial role in weaving multiple aspects of
computation in aspect languages. Except that expressing imperative programs in the
uniform form of expressions simplifies these transformations, this form is useful from the
viewpoint of recognizing different aspects of computation at any level of program structure.
In this paper we present the relation between imperative language and PFL – a process
functional language, which manipulate environment variables in a side-effect manner, still
preserving a purely functional principle based on evaluating expressions. Using an
example of an imperative structured program, we will show the semantical equivalence of
process functional and imperative programs. As a result, fine grained PFL form for picking
out potential join points in imperative programs is obtained.

Keywords. Programming paradigms, programming languages, side effects, process
functional language, aspect oriented programming.

1 Introduction
Purely functional programs [4] support equational reasoning – the program
synthesis and the proof of program correctness [4, 16, 17]. However, the complex
systems are not functional [20]. They are executed using I/O, exceptions, interrupt

J. Kollár et al. Semantical Equivalence of Process Functional and Imperative Programs

 – 114 –

handling, channel communication, etc. depending on the application to which they
are proposed. The stateful computation/algorithm is such in which the state is
significant. Since the state plays significant role in systems, an imperative
language seems to be the best alternative for describing their functionality. On the
other hand, using functional programming paradigm, a program is more tightly
bound to the use of mathematical methods and more appropriate to
transformations needed when weaving multiple aspects in aspect languages
[2,3,7,15,23]. Let us introduce three approaches used in functional languages, able
to express stateful computation. Using a functional language, the mechanism for
updating a set of memory cells is required.

In Standard ML [5], the variable environment is used. For example, v is a memory
cell in SML definition val v = ref 5. The value of variable v is accessed using
operation ! : a ref → a in the form !v. The assignment v := !v + 1 increments the
value of cell v by one. In SML, assignments are expressions of unit type and they
may be used elsewhere in expressions by a programmer, i.e. explicitly as it is in an
imperative language.

A pure, lazy functional language Clean [1] uses linear types again to perform the
stateful computation, like Haskell. The asterisk in a type *World designates that
the type World is linear type. Since each function (process) may be of the type
*World → *World, no single abstraction of monad is necessary to perform stateful
computation.

No assignments are available to a programmer in Glasgow Haskell [19] – a purely
functional language. They are hidden in application of processes, called state
transformers [20]. The single abstraction of monads – mutable abstract type [22] is
used to update the values of linear types, i.e. such that are accessed by a single
pointer.

A monad is a triple (M, unitM, bindM), where M is a linear type, and the
operations unitM and bindM are of the type:

unitM :: a → M a and bindM :: M a → (a → M b) → M b

In contrast to SML, Haskell is not environment-based language. The disadvantage
of monadic approach is (at least from the viewpoint of software engineering) that
memory cells are invisible to a user.

Seemingly, we may decide either to hide variable environment not using
assignments, or, making environment visible, we must use assignments explicitly.
However, process functional paradigm is based on preventing assignments, at the
same time making variable environment visible to a programmer. PFL – an
experimental process functional language [8, 9, 10, 11, 12, 13, 14], which we have
developed in the past, is closely related to process functional paradigm.

Syntactically, PFL is a reduced subset of Haskell language, extended in a uniform
way to support object programming. Currently we have two generators from PFL -

Acta Polytechnica Hungarica Vol. 1, No. 2, 2004

 – 115 –

a generator to Java and to Haskell languages. Originally, our aim was to develop a
programming language, that is safe, in the sense that it manipulates the state by
application of processes instead of assignments and, at the same time, it provides
well-defined spatial information about memory data organization to a
programmer.

Considering aspect oriented programming methodology [2,3,7,15,23], it seems
that PFL may used as a general implementation bridge for any target imperative
language, supporting this multi-aspect approach to programming. In this paper, we
present the relation between imperative structures of a simple but representative
imperative language and process functional expressions. Providing the translation
scheme P, and a simple imperative program expressing it in PFL, we prove
informally the equivalence of process functional and imperative languages.

The essence of PFL is introduced in section 1. A representative subset of an
imperative language (omitting procedures and functions) is defined in section 2. In
section 3 we present the translation scheme P which maps imperative programs to
PFL form. An example of the simple imperative program, as well as its equivalent
form in PFL, is introduced in section 4.

Finally, in Conclusion, we summarize our results and briefly comment the
directions of further research. We will use Bird‘s mathematical notation for PFL
programs in this paper.

2 The Essence of PFL
In PFL, the assignments are performed by a process application implicitly [8]. The
source form of a process definition (an equation designated by =) is seemingly
purely functional. On the other hand, a variable environment is visible to a
programmer in a process type definition (an equation designated by ::).
Environment variables – memory cells – may be shared by two or more processes
defined in the same scope. They are introduced as the attributes of the types of
process arguments. There are no reference types in PFL. Each argument type (v T)
introduces the variable v of the type T to the variable environment. Each function
comprising at least one argument type in the form (v T) is a process. Except that,
processes are functions defined in terms of unit types for arguments and/or values.
Primitive and algebraic types are designated by identifiers starting with uppercase
letters and the environment variables (memory cells) by identifiers starting with
lowercase letters. It is just one exception from this rule, when the type T is a type
variable. Then it is designated by single lowercase letter. For example (a a)
means, that the first a is the environment variable and the second a is the type
variable. The computational model for PFL based on control-driven data flow can
be found in [9].

J. Kollár et al. Semantical Equivalence of Process Functional and Imperative Programs

 – 116 –

As an introductory example, let process p is defined as follows:

p :: a Int → b Int → Int

p x y = x + y

Then, the value of expression (p 2 3) is 5. Like the side effect of evaluation, the
values of cells a and b (environment variables) will be a = 2 and b = 3.

Now, suppose that the values of a, b are a = 2 and b = 3.

Hence, the value of (p ()()) is 5 again, and the state of a and b (a = 2 and b = 3)
remains unchanged. The arguments () are control (unit) values of unit types ().

Provided that an argument is of process type (v T), then applying the process on a
control value (or an expression that yields control value), the process value is
evaluated using the current value having been stored in v before the process is
applied. Control values do not affect the function of computation directly,
nevertheless, the order, in which the expressions of unit types are evaluated,
affects the state. Notice, that the processes (in contrast to functions) are evaluated
eagerly, following the principle of causality: The value of a process is evaluated
after the arguments are evaluated. The order, in which the arguments are
evaluated, may affect the function of computation. That is why source process
definitions are purely functional just seemingly. As an example, let us define the
process q as follows:

q :: a Int → a Int → Int

q x y = x + y

Evaluating (q 2 3), the result is 5, but the value assigned to variable a is either 2 or
3, depending on whether q is applied first to 3 or to 2. If the arguments (that
may be complex expressions not just simple constants, such 2 and 3 above) are
evaluated in parallel, the state change is non-deterministic. Clearly, the definition
of process q is purely functional just if we omit its type definition (marked by ::),
otherwise not. On the other hand, possible nontransparency is evidently separated
from the definition itself and it is shifted to the type definition.

Let process r is defined as follows:

r :: a Int → ()

r x = ()

The application (r (4 + 5)) evaluates the argument 9, which is assigned to a. The
result is a control value () which does not allocate the stack at all. It may be
noticed that PFL expression application (r (4 + 5)) corresponds to the assignment
a := 4 + 5 in an imperative language.

In the last introductory example, let process s is defined as follows:

Acta Polytechnica Hungarica Vol. 1, No. 2, 2004

s :: ()→ ()

s () = ()

Process s can be applied to each expression of unit type, yielding control value,
for example, such as (s (r (4+5))). Side effect is the same as for (r (4+5)), which
yields control value (). This value is used as the argument of s. In PFL, the
conception of data and control values is well balanced, not hiding them to a
programmer. We will suppose evaluating PFL expressions in leftmost innermost
order, to guarantee correct semantics for imperative control structures – statements
of a sequential imperative language.

3 An Imperative Language
We will start with the syntactic domain of a simple imperative language, in which
the program pr comprises variable declarations vd and block bl consisting of
statement sequence, according to the Fig.1. A statement st may be assignment as,
if statement if , or while statement wh.

pr ::= vd bl
vd ::= var v1 : T1 ; . . . vn : Tn;
bl ::= begin st1 ; . . . ; stm end
st ::= as | if | wh
as ::= v := e
if ::= if e then blT else blF
 | if e then blT
wh ::= while e do bl
Fig. 1: An imperative language

The detailed syntax of expression e is not substantial for our purposes. In Fig.1, Tk
are types, n is the number of variables (n ≥ 1), m is the number of statements (m ≥
1) of a block, and e is an expression. Instead of extended BNF form (st (; st)*) we
rather express non-empty statement sequence by st1 ; . . . ; stm (m ≥ 1). Block blT
of if statement is executed when the value of boolean expression e is true, and
block blF is executed when e is false.

4 Expressing Imperative Programs in PFL
In this section we will present the scheme P for translation of imperative language
in Fig. 1. For the purpose of simplicity, we will consider just variables declared in
variable declarations vd are used in block bl.

Program pr is equivalent to PFL expression P [vd bl , such that: []]

 – 117 –

J. Kollár et al. Semantical Equivalence of Process Functional and Imperative Programs

P [vd bl] = P [bl A [[]]

[]

[]]

[]]

[[[]

]

where A = { v1 : T1 ; . . . vn : Tn } is the set of associations defined in variable
declarations vd

such that vk are used in bl.

For example, the set of associations for imperative program in Fig. 2 is as follows:

A = {x : Int, y : Int, s : Int}

Expression e in an imperative language is equivalent to PFL expression P [e]
Ae, as follows:

P [e Ae = ep ()1 . . . ()r

provided that v1, . . . , vr are (imperative) variables used in e, Ae = {v1 : T1 , . . . , vr :
Tr}, such that Ae ⊂ A, and process ep is a new process defined as follows:

ep :: v1 T1 → . . . → vr Tr → T

ep x1 . . . xr = e[x1/v1, . . . , xr/vr]

where T is a type of expression e, and its form e[x1/v1, . . . , xr/vr] means that in this
expression are variables vk substituted by lambda variables xk.

For example, let us consider the expression s + x on the right hand side of
assignment

s := s + x. This expression is translated using associations Ae = {x : Int, s : Int}
into the application of a new PFL process, say sxp, in the form sxp () (), where that
sxp is defined as follows:

sxp :: s Int → x Int → Int

sxp p q = p + q

Block bl is equivalent to PFL expression P [bl A, as follows:

P [begin st1 ; . . . ; stm end] A = blp P [st] 1 A]] 1 . . . P [stm] Am

where the variables of associations Ai are used in statements sti. It holds A = A1 ∪
. . . ∪ Am. The new process blp applied in PFL expression above, is defined as
follows:

blp :: ()1 → . . . → ()m → ()

blp ()1 . . . ()m = ()

For example, if top-level block contains three assignments, one while statement
and one write statement, then corresponding PFL definition of process blp is as
follows:

 – 118 –

Acta Polytechnica Hungarica Vol. 1, No. 2, 2004

blp :: ()→()→() →()→()→()

blp () () () () () = ()

Statement st is equivalent to PFL expression P [st] A, which is equal to PFL
expressions for assignment, if statement, or while statement.

[]

[]

[] []]

[]

[]

[]

[] []]

[]

[]

[] []]

[]

[]]

Assignment as is equivalent to PFL expression P [as] A as follows:

P [v := e A = asp P [e A] e

where the variables of associations Ae are used in expression e. It holds A = {v :
T} ∪ Ae. The new process asp is defined as follows:

asp :: v T → ()

asp x = ()

and P [e] Ae is a PFL expression.

If statement if is equivalent to PFL expression P [if] A, as follows:

P [if e then blT else blF] A = ifp

The new process ifp is defined as follows:

ifp :: ()

ifp | P [e] Ae = P [blT AT

| otherwise = P [blF] AF

where A = Ae ∪ AT ∪ AF.

If statement without blF block is expressed as follows:

P [if e then blT] A = ifp

In this case the new process ifp is defined as follows:

ifp :: ()

ifp | P [e] Ae = P [blT AT

| otherwise = ()

where A = Ae ∪ AT.

While statement wh is equivalent to PFL expression P [wh] A, as follows:

P [while e do bl Ae = whp ()

New process whp is defined as follows:

 – 119 –

J. Kollár et al. Semantical Equivalence of Process Functional and Imperative Programs

whp :: ()→()

whp () | P [e] A[] []e = whp P [bl] Aw

| otherwise = ()

where A = Ae ∪ Aw.

PFL form for boolean expression e in if and while statements is the same as for
general expresions e being shown above.

5 An Example
As an example, let us consider a simple imperative program in Fig. 2, which reads
two integers x and y, and computes the sum s of absolute values in the range

(x . . . y).

It is supposed, that primitive function read (referentially non-transparent) and
primitive write, of the types read :: Int, and write :: Int → (), are built-in.

var x, y, s : integer;
begin
 x := read; y := read; s := 0;
 while x <= y do begin
 if x > 0 then begin
 s := s + x
 end else begin
 s := s − x
 end;
 x := x + 1
 end;
 write(s)
end
Fig. 2: Imperative program

As we will see, except that the basic association is A = {x : Int, y : Int, s : Int},
after expressing the program in PFL form, each process uses a subset of this
association, which is defined by its type definition.

Since the values of variables s, x and y are used in expressions, the accessing
processes s, x and y (for the purpose of simplicity we use for them the same names
as for variables) are identities, defined in Fig. 3a.

s :: s Int → Int
s p = p

 – 120 –

Acta Polytechnica Hungarica Vol. 1, No. 2, 2004

 – 121 –

x :: x Int → Int
x p = p

y :: y Int → Int
y p = p

Fig. 3a: Accessing processes

As we will see below, the weakness of imperative programs is that the argument
of accessing processes is just unit value (), not a complex expression evaluated to
unit value. The values in environment variables s, x, and y are accessed using
applications s(), x(), and y(), respectively.

The top level block of a program in Fig. 2 consists of the sequence of three
assignments, followed by two statements (while and write). So, we can integrate
the transformation of block, sequence and assignment combining all of them by
the definition of single process bsa – block-sequence-assignment compound
process. Since different compound process expresses the body of while statement
they are designated by different names: bsaA for the top level block, and bsaB for
the while block in Fig. 3b. On the other hand, both blocks in if statement consist of
assignment to the same variable s. Such blocks can be integrated using one
process bsaC for both blocks, as shown in Fig. 3b.

bsaA :: x Int → y Int → s Int → () → () → ()
bsaA p q r ()() = ()

bsaB ::()→ x Int → ()
bsaB () p = ()

bsaC :: s Int → ()
bsaC p = ()

Fig. 3b: Compound processes

Now we are ready to built up the structure of our program in Fig. 2 in the whole,
defining while process using the scheme for while statement, if process using the
scheme for if statement and finally, main as a constant expression – the
application of bsaA, yielding unit value, as can be seen in Fig. 3c.

while :: () → ()
while () | x()<= y() = while (bsaB if (x() + 1))

| otherwise = ()

if :: ()
if | x() > 0 = bsaC (s() + x())

| otherwise = bsaC (s() − x())

main :: ()
main = bsaA read read 0 (whp ()) (write (s()))

Fig. 3c: The structure of the program

J. Kollár et al. Semantical Equivalence of Process Functional and Imperative Programs

 – 122 –

The PFL program in Figures 3a, 3b, and 3c including built-in read and write, is
semantically equivalent to the imperative program in Fig. 2; the evaluation of
main is the same as the execution of program in Fig. 2.

Conclusions

Using PFL, a program is expressed without assignments and statement sequences,
preserving at the same time the visibility of environment variables – memory cells.
An imperative computation is performed by the evaluation of an expression with
side effects.

We have illustrated structured imperative style of programming, building PFL
program in botton-up manner. It is not to argue that process functional
programming is better than when an imperative language is used. But we can see
the following facts. First, exploiting the application dependency in imperative
languages is poor, if any. Omitting functions, lambda variables (designated by p,
q, and r in our example in Fig. 3a, 3b, and 3c) are not used in expressions at all.
Second, the use of variables in imperative languages is far less disciplined, as
when they are associated with PFL processes in their type definitions and shared
by process applications.

The arguments of processes in this paper are supposed to be evaluated sequentially
and eagerly. Essentially, this is the simpliest way how to guarrantee the required
degree of determinism in computation. On the other hand, the application
dependency is other alternative, exploited using monads [22]. Although this is
over the scope of this paper, monadic programming style is not excluded using
process functional language. Using monadic style in PFL, in contrast to Haskell,
memory cells remain still visible, as we have shown in [12].

Considering multi-paradigmatic approaches, such as combining logic and
functional programming [18, 21] or object oriented and logic programming in
aspect programming methodology, the aim of both is to increase the semantical
power of the language, using less or more uniform language syntax. Especially in
aspect programming, the underlying language such as Java in AspectJ [7]
determines the transparency of programs, because Java constructs are used in
pointcut designators. Except that, renaming a metod in an original module after
adding aspect module may affect the semantics the program inappropriately.

As has been shown, PFL form of programs allows (and requires) to designate the
structures and substructures of a program systematically. Then we may think
about more fine grained aspects, as those when an imperative language is used. In
the past, we have PFL-to-Java and PFL-to-Haskell generators developed. The
subject of our current research is integrating aspect and process functional
paradigm of programming. In this framework, with respect of complexity of
software systems and the need to precede their behavior [6], we are interested
especially in methods for replacing the „programming style“ (in which PFL
implementation structures are named) by the „specification style“ in which they

Acta Polytechnica Hungarica Vol. 1, No. 2, 2004

 – 123 –

are derived [16, 17] and affected by new static and dynamic aspects, in the way
that run-time can be still monitored, corrected, profiled and optimized according to
user requirements.

Acknowledgement

This work was supported by VEGA Grant No. 1/1065/04 – Specification and
implementation of aspects in programming.

References

[1] P. Achten, R. Plasmeijer: Interactive Functional Objects in Clean. In: Clack
et al. (Ed.): IFL’97, LNCS 1467, 1998, pp. 304–321.

[2] J. H. Andrews: Process-algebraic foundations of aspect-oriented
programming, In Proceedings of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns (Reflection
2001), LNCS, Springer-Verlag, 2001, Vol. 2192, pp. 187–209.

[3] E. Avdicausevic, M. Lenic, M. Mernik, and V. Zumer: AspectCOOL: An
experiment in design and implementation of aspect-oriented language. ACM
SIGPLAN not., December 2001, Vol. 36, No.12, pp. 84–94.

[4] R. S. Bird: Algebraic Identities for Program Calculation, The Computer
Journal, Vol.32, No.2, 1989, pp. 122–126

[5] R. Harper, D. MacQueen, and R. Milner: Standard ML. ECS-LFCS-86-2,
LFCS Report Series, University of Edinburgh, Department of Computer
Science, 1986, 35pp.

[6] Š. Hudák, S. Šimoňák: FDT Interfacing, Analele Universitatei din Oradea,
Romania, pp. 53-59.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and W. G.
Griswold: An overview of AspectJ, In Proceedings European Conference on
Object-Oriented Programming, LNCS, Springer-Verlag, Vol. 2072, 2001,
pp. 327–353

[8] J. Kollár: Process Functional Programming, In: Proc. of Int. Conf. MOSIS’
99 Conference, Rožnov pod Radhoštěm, Czech Republic, April 27–29, 1999,
pp. 41–48.

[9] J. Kollár: Control-driven Data Flow, Journal of Electrical Engineering, Vol.
51. No. 3-4, 2000, pp. 67–74

[10] J. Kollár: Comprehending Loops in a Process Functional Programming
Language, Computers and AI, Vol. 19, 2000, pp. 373–388

[11] J. Kollár: Object Modelling using Process Functional Paradigm, Proc. 34th
Spring International Conference MOSIS 2000 - ISM 2000 Information
Systems Modelling , Rožnov pod Radhoštěm, Czech Republic, May 2–4,
2000, ACTA MOSIS No. 80, pp. 203–208

J. Kollár et al. Semantical Equivalence of Process Functional and Imperative Programs

 – 124 –

[12] J. Kollár: Partial Monadic Approach in Process Functional Language, Acta
Electrotechnica et Informatica, No. 1, Vol. 3, 2003, TU Košice, Slovakia, pp.
36–42

[13] J. Kollár: Unified Approach to Environments in a Process Functional
Language, Computing and Informatics, Vol 22, 2003, pp. 439-456

[14] J. Kollár, P. Václavík, and J. Porubän: The Classification of Programming
Environments, Acta Universitatis Matthiae Belii, 2003, 10, 2003, pp. 51-64

[15] M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer: A reusable object-
oriented approach to formal specification of programming languages,
L’Objet, 1998, Vol. 4, No. 3, pp. 273-306

[16] V. Novitzká: Structures of Algebraic Specification Languages, Proc. of the
Int. Conf. ECI’98, Košice–Herl’any, Slovakia, October 8–9, pp. 1–6.

[17] V. Novitzká: Systems for Deriving Correct Implementations. In:Proc. of Int.
Conf. MOSIS’99 Conference, Rožnov pod Radhoštěm, Czech Republic,
April 27–29, 1999, pp. 201–207.

[18] M. Paralič: Mobile Agents Based on Concurrent Constraint Programming,
Joint Modular Languages Conference, JMLC 2000, September 15 6-8, 2000,
Zurich, Switzerland. In: Lecture Notes in Computer Science, 1897, pp. 62–
75.

[19] J. Peterson, K. Hammond (Ed.): Report on the Programming Language
Haskell: A Non-strict, Purely Functional Language Version 1.3. Yale
University, May 1996. 164pp.

[20] S. L. Peyton Jones, P. Wadler: Imperative functional programming. In 20th
Annual Symposium on Principles of Programming Languages, Charleston,
South Carolina, January 1993, pp.71–84.

[21] G. Smolka: The Oz programming model, In Jan van Leeuwen, editor,
Computer Science Today, Lecture Notes in Computer Science 1000,
Springer-Verlag, Berlin, 1995, pp. 324–343.

[22] P. Wadler: The essence of functional programming. In: 19th Annual
Symposium on Principles of Programming Languages, Santa Fe, New
Mexico, January 1992, pp. 47-70.

[23] M. Wand: A semantics for advice and dynamic join points in aspect-oriented
programming. Lecture Notes in Computer Science, 2001, 2196:45-57.

	1Introduction
	2The Essence of PFL
	3An Imperative Language
	4Expressing Imperative Programs in PFL
	5An Example
	Conclusions
	Acknowledgement
	References

