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Abstract:This paper is the first part of a series of studies where we examine several
methods for the solution of the boundary layer equation of the fluid mechanics. The first of
these is the analytical or rather quasi analytical method due to Blasius. This method
reduces a system of partial differential equations to a system of ordinary differential
equations and these in turn are solved by numerical methods since no exact solution of the
Blasius type equations is known. We determind all the Blasius equation neccessary for up
to 11-th order approximation. Our further aim to study the finite difference numerical
solutions of the boundary layer equation and some of the methods applying weighted
residual principles and by comparing these with the “exact” solutions arrived at by Blasius
method develop a quick reliable method for solving the boundary layer equation.
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1 Boundary Layer

The motion of a fluid around a solid body according to Prandtl (1904) can be
described by the Euler equation of the perfect (that is nonviscous) fluid motion
except in a thin layer near the surface of the solid body where the speed of the
motion increases from zero to the speed that would be in case if the fluid had no
viscosity at all. Outside the boundary layer the fluid may be considered as
nonviscous. This is the case when the velocity of the fluid in the direction of the
flow around the body increases. When it decreases that is the pressure increases,
often the fluid motion unable to follow the bodies’ surface and it gets detached
and the space between the surface of the solid and the detached fluid is filled with
irregularly moving fluid. Prandt’s theory of boundary layer, more precisly his
equations describing the motion within the boundary layer can predict the point(s)
of detachment accurately. The detachment begins where the curve of the velocity
profile starts out perpendiclar to the surface of the solid. After this point a
backward flow develops. The typical values used for describing the boundary
layer are:
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O : Boundary layer thickness is the distance measured from the surface of the
solid where the speed of the fluid is within 1% of the speed outside of the
boundary layer.

0, : Displacement thickness O, = éI(U —u)dy
0
, 17
0, : Impulseloss thickness 0, = ?J-(U —u)udy
0

sk sk 1 <
O : Energyloss thickness 0 = I j (U —u)*udy
0

ok

Profile parameter H,, = ——

2 The Eqations of the Boundary Layer Flow

Inside the boundary layer that is in the vicinity of the body the forces due to
viscosity are comparable in magnitude with the forces of inertia they can however
be neglected outside of it. The pressure in the boundary layer could be taken as
constant and its value equal to the pressure belonging to the corresponding perfect
fluid flow, that is the pressure outside of the boundary layer. Without going into
more details we give the equations of the boundary layer motion in case of two
dimensional staionary incompressible fluid flow:

bR § fhhdl
ox Oy X oy

al+@ — O

ox Oy

where u is the velocity of the fluid in the boundary layer parallel to the tangent of
the surface of the solid v is perpendicular to it and U is the velocity outside of the
boundary layer. # and v must also satisfy the boundary conditions: y =0:

u=0v=0andat y=0 u=U(x).
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3 Blasius’ Method for Solving the Boundary Layer
Equation

The boundary layer equations can be reduced to an infinite system of ordinary
differential equations with the following method due to Blasius. By substituting

oy

for the velocity components # = —— and v = —l, where I/ is the stream
oy Ox

function of Lagrange the second of the two boundary layer equations is

automaticly satisfied and the first one becomes:

. dU
YViWo V.V _UE—F YW sy -

This equation then can be reduced to a set of ordinary differential equation if for

Y in case of symmetric bodies the following power series expansion is
substituted:

V= \/uz{%xﬁ () + 4u3x3f3 () + 6”5x5f5 (m) + 8”‘7)C7f7 (m) +

+10uyx’ £, (17) +12u, 5" £, (1) + ..

expansion of U(x), that is:

. 3 5 7 9 11 13 15

U=ux+ux" +ux’ +u,x" +ugx” +u X +ux” +ux” +
17 19

Fu,x " FUugXx +e.

From the last two equations it follows that:

UCZ—U =ulx+4uux’ + (6u1u5 +5u; )XS + (8uyue, + Buuyug 7 +
X

(IOqu9 +10uu, +5u? )x9 + (12ulu11 +12uyuy +12u5u, )x” e
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v, = 1/L{ulfl (1) +12u,x% (1) + 30usx” f(7) + 561,x° f5(17) + 90u,x° £, (17) +
Z'tl
+132u,,x"° f1, (1) + ...}

W, =u,xf, (1) + 4us x> £ (17) + 6usx” () + 8u,x” f5(17) +10uyx” £ (17) +
+12u, x" £, (1) + .

Vo = u1f1'(77) + 12“3x2f3' (m7)+ 30”5x4fsl (m) +56u7x6f7l (m) +90u9x8f; () +
+132u,,x"° £, (1) + ...

u " " " "
V= \/;{ulel (m) + 4”3x3f3 (m) + 6u5x5f5 (m) + 81"7367f7 () +

+10uyx’ £, (1) +12u,,x" £, () + ...

u m " " "
Vo 271(“1Xf1 (77)+4u3x3f3 (77)+6”5x5f5 (77)+8u7x7f7 () +

+10uyx’ £, (1) +12u,, x" £, (17) + ... )

and

YW, = ulzxfll2 + l2u1u3fl'f3'x3 + (36ulu5f1'f; + 48u32f3'2 )x5 +
(64uu, f, f, +192uu f;, f)x’ +

(100u,u, £, f, +320usu, £+ f, +180us £;7)x" +

(144uu, £, 1) +480uu, £ f, +5T6usu, fo f)x'" +........

v, =u fifix+ Gus ffs 1200, f )X +

(6u,ug f, fs +48ul fyfs +30uu, fi f,)x* +

Buyu, f fr + T2uus fo fo +120usus fi fy +56uu, £, £, )x" +

A0u,uy f, fo +96usu, fofy +180us fsfs +224uyu, f5 fy +90uu, f, ) )x” +
2uyu,, fofry +120usu, £y fy +240usu, f5 f; +336usu, f, f5 +

360u,us fo fy +132u,u, fo /) )x" +......

finally substituting these into the bondary layer equation:

YWy —WW, =UU +y,,

and comparing the coefficients of the powers of x we get the differential equations
of Blasius:
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Comparing the coefficients of X yields:

wl ;7 —ul fify =ul vl fy

and from here we get:

R =1

From the coefficients of X~ we get:

V2ugus fi fy = (Qugus fify +12u0s f7 fy) = 4,y + duu,
that is:

3f1'f3' - f1f3 - 3f1”f3 =1+ f3

As for x°:

36”1”5f1‘f5' + 48”32f3'2 - (6”1”5f1f5” + 48”32f3f3" + 30”1”5flnf5) =
6u,us +3us +6u,us f;

Dividing by 6u,u:

2 2
U, U,

2
" " 1
: fofs +51 f5)=1+5
5

U

6fifs 81 —(fifs +8

If we seek f5 in the form

+fs

u
Uyl u U Us

2

f = + Lh we get for and /1. the following differentialequations:
5 =85 " 5 g gs 5 the following ere equations:
1“5

6/18s— f18s 5/ gs=1+g;
6f hy +8f — fih =5f, hy =8 f. 1 :5+h5

Case X . This case is sufficiently complex to demonstrate the method of finding
the Blasius type diffrential equations for the general case that is for x" where n

is an arbitrary odd integer. By comparing the coefficients of x” we get:
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(64”1”7f1‘f7' + 192“3”5fsyf5') -
(8”1”7flf7" + 72“3”5f3f5" + 120”5”3fsf3" + 56”7“1f7f1”) =
(Suuy + ugug) + Suyu, f

Dividing by 8u,u, gives:

(8f1f7+24 : 5f3f5)_(f1f7 +9- stfs +15-= 5f5f3 +7f7fl):
uu, U, uu,
u,u m
A+ + f;
U,
Usus

Let us seek f, in the form f, =g, + h7. Substituting this into the last

UU,

equation yields for g, the following ordinary differential equation:

81,2, - f1g, - 111, =1+g,

and for /7
RTINS usu u; URTI
822 f, hi+24—="2f (g, +——h)——=f, h7—
uus; uus; UUs uus;
2 2
RTR ooour . Uy u; -
9 f3(gs + hs) =15 fi(gs+ hs)=Ths f; =
Uy 1Us U, UUs
uu u,u =
s | Hsls
iy U,
-~ o~ le
Substituting for 7 h7 = h, + ——k, yields for ,
uu,

8fihy +24f,g5 = fihy =985 =15/, =T f hy =1+ hy
and for &,

8fik, +24f,hs — fik, =9 f,hs —15f, hs =11 'k, =k,
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With the same method we can arrive at the equations for all the fn Blasius
functions. With 7 increasing fn has to be broken down into more and more

terms. Here the forms of f , and the corresponding differential equations are

given up to the order of 11.

2
u
_ 3
fs=gs+ hs
Ul
2
u,u u
_ 3ls 3
fr=g,+ h; + 2 k;
uu, U, u;
2 2
u,u u Uu,u u
_ sl 5 3Us . 3
Jo =80+ hy + ky + > Jot—5—4,
U Uy Uy 1 U
u u.u uzu u,u 3u
_ 3l sUq 3Uy 3Us 3Us
Su=gu+ hy, ki, ) 1 2 1 S my t
U Uy, 1 Uy 1 Uy 14
5
Uy
T M
Uy,

The differential equatios that the functions f,, f3. 5. n,.» &, hy, k7, &5,
hy, kos Jo» Q9> 11> Puys Kiys Jis 11> My, 1y have to satisty are:

fE=Af =1+ 1

3f1'f3' - f1f3 - 3f1”f3 =1+ f3

6/ 85— f18s—5/1 gs=1+g;

6 f hy +81 — fihs =51 'hy —8f. 1 =5+h5

81,8, - fig, =111, =1+g,

81 h, +24f,g5— fih, =91, —15f,gs—Tf h, =1+h;
8fik, +24f,hs — fik; =9 f,hs =15, hs =11k, =k,

10f,gy— f180 =9/, &y =1+ g,
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101, hy +32 1,85 — fihe 9,6 f,87 — 22,41, g, =9 f, hy =1+ h,
10f, k, +18g. — fik, —18g.2. =91, 'k, :5+k9

10, jo +32 fsh, +36g.h, — f,js — 9,6 fih, —18g.h, —18g.hg —
22,41 h, =91, jo = jo

101, qy +32 fk; +18h7 — fq, — 9,6 fok, —18hsh, —22,4 £k, —
9/ s =45

12fig, — fign—11f g, =1+g,

121 h, +40f,g, — fih, —=10f,g, =301, go =111, h,, =1+h,,
121k, +48g.g. — fik,, —20g,g, —28g.g, —11f, 'k, =1+k,,
121, j,, +40 f,hy +48ho g, — f1 )i, —10 fyhy —20h, g, —28h. g, —
30 f5hy =111 iy = Jn

121, q,, +40 fik, +48g.h, — fiq,, =10 fiky —20g h, —28g.h, —
30fk, ~11£ g, =),

12f/m;, +40f, j, +48h.k, +48g.h, — fim], =10 f, j; — 20hsh, —
20g.k; —28g.k, —28h.h, =301, j, —11f'm, =m;

12 £ ny, +40 f,q, — fin,, =10 foq, —20hk, —28h.k, =30 £, q, —
11f1"n11 = nll

The u(x,y)=0 at y=0 and }glolo u(x,y) =U(x) boundary conditios in

termSOffl’f3’g5’h5’g7’h7’k7sg9’h9ak9sj9sQ9»g11,/’l11ak11,
Ji1> 911> My, .0y, become

atnn=0

L=h=0 fi=f,=0 g,=g,=0; hy=h;=0; g,=g,=0;
hy=hy=0; ky=k; =0, gy=g,=0; hy=hy=0; ky=ky=0;
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j9:j;:O;Q9ZQ;:0; g11:g£120; h11:h£1:0; k11:k£1:0;
Ju=Ju=0;9,=¢9,=0 m,=m,;=0; n,=n;, =0;

and at 77 = o0

Smt =t g = =0 g =t =0 k=0 gy =
6 8 10

hy =05 ko =0; j, =05, =0; g{1=112; hy =05 ky =0; j, =0;

4y =0; my =0; n, =0;

Conclusion

We have derived the ordinary differential equations necessary to carry out
numerical approximation to the solution of the boundary layer equation by 11-th
order Blasius method.
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