

Antioxidant activity of fresh fruits (I $_{50}$ mg) mg sample necessary to 50% inhibition in colour of DPPH reagent

EFFECTS OF SOME EXTRUSION PARAMETERS ON THE HARDNESS OF EXTRUDED LENTILS

T. Petrova, P. Tzonev, G. Zsivanovits, N. Penov*
Canning Research Institute,
154 Vassil Aprilov Blvd., 4000, Plovdiv, Bulgaria
* University of Food Technologies,
26 Maritza Blvd., 4000, Plovdiv, Bulgaria
e-mails: dorrapetrova@abv.bg; zsivig@yahoo.co.uk

The objective of this research was to study the effects of moisture content (18, 20, and 22%), and screw speed (100, 150, and 200 rpm) on the hardness of extruded lentils. The lentil semolina was extruded with a single screw extruder (Brabender 20 DN) at constant barrel temperature (160°C), screw compression ratio (2:1), and die diameter 4 mm. The hardness of the extrudates was measured with a TA.XT Plus Texture Analyser, Stable Micro Systems. The textural profiles of the extrudates showed that feed moisture had the highest effect on the hardness.

Levels Moisture content (%) 18 20 22 Screw speed (rpm) 200 100 150

Figure. 1 Typical curve of extruded lentil tested with TA.XT Plus Texture Analyser

 $F = -221,\!056 + 21,\!25W + 0,\!05n, \quad (N)$ Where F- measured force, $N;\,W-$ moisture content, $\%;\,n-$ screw speed, rpm.

Figure2 Standardized estimated effects of regression model coefficients on the hardness (R-squared = 99.3619% Standard Error of Est. = 3.51347)

c)
Figure 3
Hardness vs. moisture content of extruded lentil at various screw speeds