Hunyadi D.: AZ AMMÓNIUM-PARAVOLFRAMÁT ...

ETO: 544.557:546.78

CONFERENCE PAPER

Hunyadi Dávid

Budapesti Műszaki és Gazdaságtudományi Egyetem

Vegyészmérnöki és Biomérnöki Kar

Szervetlen és Analitikai Kémia Tanszék

david.hunyadi89@gmail.com

AZ AMMÓNIUM-PARAVOLFRAMÁT, (NH₄)₁₀[H₂W₁₂O₄₂]·4H₂O, IPARI ALAPANYAG ELŐÁLLÍTÁSA EGY ÚJ SZILÁRD-GÁZFÁZISÚ HETEROGÉN REAKCIÓVAL

The Development of Alternative Production of Ammonium-Paravolframate, $(NH_4)_{10}[H_2W_{12}O_{42}]\cdot 4H_2O$, Industrial Raw Material

Proizvodnja industrijske sirovine amonijum-paravolframata $(NH_4)_{10}[H_2W_{12}O_{42}]\cdot 4H_2O$ pomoću nove, čvrste-gasfazne heterogene reakcije

Az ammónium-paravolframát (APT) a volfrámipar legfontosabb alapanyaga, melyből különböző volfrám-oxidok, volfrám-karbid és fém volfrám állítható elő. Ma az iparban az APT-t egy többlépcsős nedves kémiai eljárással állítják elő. Ebben a tanulmányban azt vizsgáltuk, hogy lehetséges-e APT-t előállítani WO₃, NH₃ és H₂O közötti szilárd-gázfázisú heterogén reakcióval. A reakció tanulmányozása mellett a reakciókörülmények hatását is megvizsgáltuk a reakciótermékekre: a WO₃ por összetétele, szerkezete, szemcsemérete, NH₃ parciális nyomása.

Az általunk elkészített APT-t XRD, Raman, FTIR, TG/DTA-MS mérésekkel jellemeztük, és arra jutottunk, hogy megegyezik a kereskedelmi APT-vel, helyettesíteni tudja azt. A SEM- és TEM-felvételeken látszott, hogy sikerült nanoszemcsés APT-t előállítani, ez korábban még senkinek se sikerült.

Kulcsszavak: ammónium-paravolframát, szilárd-gázfázisú, heterogén reakció, WO3, NH3

Szilágyi Imre Miklós^{1,2}, Pokol György¹

¹ Szervetlen és Analitikai Kémia Tanszék, Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest

² MTA-BME Anyagszerkezeti és Modellezési Kutatócsoport, Budapest

BEVEZETÉS

Az ammónium-paravolframát (APT), $(NH_4)_{10}[H_2W_{12}O_{42}]\cdot xH_2O$ (X=4,7,10) a volfrámipar központi alapanyaga. Ipari körülmények között csak az APT·4H₂O forma stabil [1]. Az APT-ból többek között volfrám-oxidot, volfrám-karbidot és volfrámot állítanak elő. A volfrám-oxidokat katalizátorként [2-5], fotokatalizátorként [6–10] és gáz szenzorként [11–18] alkalmazzák. A volfrám-karbid is felhasználható katalizátorként [19, 20], illetve keménységének köszönhetően vágószerszámok, fúrók alapanyaga [21–23]. A volfrám a fényforrásiparban [1, 24–28], a fémkohászatban [29, 30], sport- és orvosi eszközökben [31, 32] és az elektronikai iparban [32] kerül felhasználásra.

Ma az APT-t az iparban nedves kémiai eljárással állítják elő. Ez egy többlépéses folyamat, mely jól feltérképezett, ugyanis alapvető fontossága miatt az APT előállítását már évtizedek óta kutatják. A gyártás nyersanyagai dúsított WO₃-tartalmú ércek (volframit, Fe, MnWO₄ és scheelit, CaWO₄), melyek általában 65–75% WO₃-tartalommal bírnak. Emellett a gyártáshoz volfrám tartalmú hulladékokat is felhasználnak, ilyen például a különféle ötvözetek és a volfrám megmunkálása során keletkező iszap, volfrám-karbid és volfrám-oxid. Ezek a hulladékok a legtöbb esetben 40–95% volfrámot tartalmaznak. Az előkezelés során a hulladékokból hevítéssel WO₃-t állítanak elő [1].

A gyártás első lépése a lúgos feltárás, mely célja a WO₃ és az ércek feloldása, vízoldható Na₂WO₄-á alakítása és a meddő kőzetek elválasztása. Feltáró reagensként NaOH- vagy Na₂CO₃-oldatot használnak; az utóbbi szelektívebb, mivel kevésbé oldja a szennyezőket. A gyakorlatban a volframitot tömény NaOH-oldatban oldják melegítés közben légköri nyomáson. A jobb szelektivitás érdekében hígabb oldat is használható, azonban ilyenkor légkörinél nagyobb nyomás szükséges. A scheelithez Na₂CO₃-oldatot használnak, hátránya az előző módszerhez képest, hogy itt 3,3-szoros mennyiségű Na₂CO₃ kell, míg NaOH esetén 1,5-szeres. Az előkezelés során előállított WO₃-mat NaOH-oldatban oldják fel [1].

A következő lépés a kapott vizes Na₂WO₄-oldat megtisztítása a szennyezésektől. Az oldatban található nagyobb mennyiségű szennyező ionok: szilikát, arzenát, foszfát, molibdát, fluorid, ólom, bizmut és alumínium. Az első lépésben a szilikátionokat csapják ki alumínium-szulfát és magnézium-szulfát hozzáadásával [1]. A kicsapást pH 9–9,5-n melegen végzik, a keletkező csapadék sokszor nehezen szűrhető. A feltárás során oldhatatlan szennyezők segítik a szűrést, ezért bizonyos technológiákban a feltárás során oldhatatlan szennyezők segítik a szűrést itt keletkező csapadékot egyszerre szűrik le. Ebben a lépésben a szilikátionok mellett a foszfát- és fluoridionokat is kicsapják. A második kicsapási lépést pH 2,5–3-n végzik. A pH csökkentését nagy mennyiségű kénsav hozzáadásával érik el, és ennek következményeként több tonna Na_2SO_4 keletkezik. Ebben a lépésben a molibdént szulfid formában csapják ki [1]. A reakcióban nagy mennyiségű H_2S és CO_2 gáz is fejlődik, melyeket NaOH-oldatban nyeletnek el. A molibdén eltávolítására egy másik módszer is használható, mely során NaS hozzáadásával pH 8,2–8,4-t állítanak be, majd aktív szenes derítést alkalmaznak [1]. Az oldatban levő Na⁺ ionok koncentrációját elektrodialízissel csökkentik, a dialízis során a Na_2WO_4 -ből polikondenzációval nátrium-izopolivolframát keletkezik. Az itt kinyert Na⁺ ionokat NaOH-oldat regenerálásra használják fel [1].

A tisztítást az ioncsere követi, mely során a Na+ ionokat NH₄+ ionokra cserélik. Ennek két megvalósítása lehetséges: az oldószeres extrakció, valamint ioncserélő gyanták használata. Az iparban az előbbi megoldás az elterjedtebb. Az extrakció előtt a nátrium-izopolivolframát az enyhén savas vizes oldatban található, melyhez fázistranszfer-katalizátort tartalmazó szerves oldószert adnak. A szerves oldószer leggyakrabban kerozin, ilyenkor oldódásjavító adalék hozzáadása is szükséges. A fázistranszfer-katalizátor átoldja a szerves fázisba a polivolframát ionokat. Fázistranszfer-katalizátorként hosszú szénláncú (C_s-C₁₀) primer, szekunder, tercier aminokat vagy ammóniumsókat használnak. A fázistranszfer-katalizátor kiválasztása az oldat szennyezés-profiljától függ. Ez a lépés rendkívül érzékeny a körülményekre: a WO₃-koncentráció a kiindulási vizes oldatban, a vizes fázis pH-ja, a WO3-koncentráció a szerves fázisban, a vizes/szerves fázisok aránya és a hőmérséklet [1]. Az extrakció után a fázisokat szétválasztják, és a polivolframát tartalmú szerves fázisból desztillált vízzel kimossák a Na₂SO₄-nyomokat. Ezt követően a szerves fázishoz vizes NH₃-oldatot adnak, a keletkező ammónium-polivolframát a vizes fázisban lesz. Ennél a lépésnél figyelni kell arra, hogy a pH 8 és 13 között legyen, valamint az ammóniakoncentrációra és a vizes/szerves fázis arányára. A szerves fázist ezután regenerálják és visszaforgatják [1]. Az ioncsere végén egy ammónium-polivolframát tartalmú vizes oldatot kapnak, melyből kristályosítással nyerik ki az APT-t.

A kristályosítás során először bepárolják az oldatot. A bepárlás foka (90– 95%) a kiindulási oldat tisztaságától függ. A keletkező NH₃ gázt és a maradék anyalúgot visszaforgatják, így csökkentve a környezetszennyezést. A bepárlás során vízgőz és NH₃ gáz távozik, ennek következtében csökken a pH és nő a WO₃-koncentráció az oldatban. A pH-csökkenés következtében úgynevezett paravolframát A ionok, $[HW_6O_{21}]^{5-}$ keletkeznek, melyek egyensúlyi reakcióban részlegesen átalakulnak paravolframát B ionná, $[H_2W_{12}O_{42}]^{10-}$. Az APT, $(NH_4)_{10}H_2W_{12}O_{42}\cdot4H_2O$ a paravolframát B ionokból kristályosodik ki.

Látható, hogy ez az eljárás meglehetősen bonyolult, a tisztítási és extrakciós lépések rendkívül pH-érzékenyek. Emellett a nedves kémiai eljárás rendkívül vegyszer- és energiaigényes, és a környezetet is nagymértékben megterheli: a lúgos feltárás során háromszoros mennyiségű Na₂CO₃-ra van szükség, a savas

pH beállítása jelentős mennyiségű kénsavval történik, a reakció következményeként több tonnányi Na₂SO₄ keletkezik.

Mivel a WO₃ jól oldódik ammóniaoldatban, és az így kapott oldatból APT-t lehet kinyerni, ezért kérdésként merült fel, hogy lehetséges-e APT-t előállítani WO₃ por, NH₃ és H₂O gőz reakciójával is. Kiindulási anyagként a WO₃-ot választottuk, ugyanis ez a volfrámipar egyik végterméke, sokszor hulladékként is előfordul. A WO₃ jól oldódik tömény alkáli lúgokban, és így az iparban a WO₃-ot is újrahasznosítják, és nedves kémiai úton APT-t állítanak elő belőle. A WO₃ tömény NH₃-oldatban is jól oldódik, és több lépésben APT-t lehet belőle kristályosítani [1].

KÍSÉRLETI RÉSZ

Munkánk során a WO₃, NH₃ és H₂O közötti szilárd-gázfázisú heterogén reakciót térképeztük fel, és tanulmányoztuk a reakciókörülmények hatását a reakciótermékekre. A WO₃, NH₃ és H₂O közötti reakciót úgy végeztük, hogy egy lezárt reaktorba szobahőmérsékleten WO₃ port és vizes NH₃-oldatot helyeztünk, melyek csak gázfázisban tudtak érintkezni. Összesen 11 reakciót végeztünk el, az első kísérletsorozat (1–4) esetében a WO₃ minták összetételének (1 - oxidált, 2 – részlegesen redukált) és a kristályszerkezetének (3 – monoklin, 4 – hexagonális) hatását vizsgáltuk. A második kísérletsorozat (5–11) esetén a WO₃ szemcseméretének (100-300 nm [5-8], 70-90 nm [9-11]) és az NH₃ parciális nyomásának hatását (1. táblázat) vizsgáltuk. Az NH, parciális nyomását a felhasznált vizes NH₂-oldat koncentrációjával szabályoztuk. A különböző WO₃-mintákat minden esetben a kereskedelmi APT, illetve HATB (hexagonal ammonium tungsten bronze), (NH4)0 33-x WO3-v szabályozott hevítésével állítottuk elő (1. táblázat). A reakciók követése és a reakciótermékek karakterizálása por-röntgendiffrakciós (XRD) mérésekkel történt. Az XRD diffrakrogramokat egy PANalytical X'pert Pro MPD X-ray készülékkel vettük fel Cu K sugárzásforrás használatával.

	Kiindulási oxidok elkészítése a reakciókhoz			Szilárd-gázfázisú heterogén reakció körülményei		
Nr.	Prekurzor az oxidhoz	Atmosz- féra	Hőmér- séklet (°C)	Kiindulási oxid a reakcióhoz	NH ₃ parciális nyomása (kPa)	H ₂ O parciális nyomása (kPa)
1	APT	levegő	600	m-WO ₃	43,40	1,37
2	APT	nitrogén	600	m-WO ₃ redukált	43,40	1,37
3	HATB	levegő	600	m-WO ₃	43,40	1,37
4	HATB	levegő	470	h-WO ₃	43,40	1,37
5	APT	levegő	600	m-WO ₃	0,15	2,34
6	APT	levegő	600	m-WO ₃	1,56	2,28
7	APT	levegő	600	m-WO ₃	0,77	2,32
8	APT	levegő	600	m-WO ₃	12,23	1,97
9	HATB	levegő	600	m-WO ₃	0,15	2,34
10	HATB	levegő	600	m-WO ₃	1,56	2,28
11	HATB	levegő	600	m-WO ₃	0,77	2,32

Hunyadi D.: AZ AMMÓNIUM-PARAVOLFRAMÁT... LÉTÜNK 2014/4. 73–82.

 táblázat. A különböző WO₃-k elkészítése a prekurzorok termikus bomlásából és a WO₂, NH₂, H₂O gőz közötti szilárd-gázfázisú heterogén reakciók körülményei

EREDMÉNYEK ÉS ÉRTÉKELÉSÜK

1–4 esetében az NH₃ parciális nyomása minden esetben 43,40 kPa volt. A reakciótermékek és az intermedierek megegyeztek ezen 4 reakció esetében. Ezért itt csak a **4-**t mutatom be részletesen (1. ábra), ugyanis az intermedierek itt voltak a legkristályosabbak. A kristályszerkezetben már 1 nap után is változás volt tapasztalható, ugyanis az XRD-diffraktogramon új csúcsok jelentek meg. Egy hét után egy többfázisú keverékhez jutottunk, a fázisok közül a W_5O_{14} -t (PDF 07-2137) és a (NH₄)₂ W_2O_7 ·0.5H₂O-t sikerült azonosítani. Ezen fázisok megjelenése jelentős eredmény volt, hiszen a (NH₄)₂ W_2O_7 ·0.5H₂O-t nem állították még elő korábban, a W_5O_{14} -t pedig eddig csak magas hőmérsékleten, vákuumban sikerült előállítani [33, 34]. A (NH₄)₂ W_2O_7 ·0.5H₂O-t (PDF 10–4500) használtuk fel az azonosításhoz. Ezek az intermedierek 30 nap elteltével APT-vé (PDF 40–1470) alakultak át.

1. ábra. A 4-es reakció diffraktogramjai különböző időpontokban

A 2. ábrán látható az összetétel hatása. A legjobb minőségű APT-t a részlegesen redukált m-WO₃-ból (**2**) sikerült előállítani. Ennek az oxidnak van a legtorzultabb kristályrácsa [35], ezért könnyebben tud átalakulni, feltehetőleg emiatt kaptuk a legjobb minőségű APT-t ebből az oxidból. A kristályszerkezet hatása is látható (2. ábra), ugyanis a szintén kissé torzult kristályrácsú [35] hexagonális oxidból (**4**) jobb minőségű APT-t kaptunk, mint a monoklin oxidból (**1**, **3**).

A második kísérletsorozatban (5–11) a WO₃ szemcseméretének és az NH₃ parciális nyomásának hatását vizsgáltuk. Amikor az NH₃ parciális nyomása 12,23 kPa volt (8), ugyanazokat a redukált átmeneti fázisokat kaptuk, mint 1–4 esetén, azonban itt kevésbé voltak kristályosak. Ennek az oka valószínűleg az lehetett, hogy a kisebb NH₃ parciális nyomás miatt kisebb volt az NH₃ redukáló hatása. Harminc nap múlva egy kevésbé kristályos APT-fázist kaptunk (2. ábra).

Kisebb NH₃ parciális nyomás esetén látható a szemcseméret hatása. 1,56 kPa-n **6** (100–300 nm) főterméke az APT·10H₂O (PDF 55–0763) volt, azonban **10** (70–90 nm) kizárólag a várt APT·4H₂O-á alakult át. Ez egy jelentős eredmény volt, hiszen egy új utat találtunk az APT·10H₂O előállítására (2. ábra).

0,77 kPa-n 7 (100–300 nm) diffraktogramján 30 nap után csupán apró APTcsúcsok láthatóak, a minta nagyrészt a kiindulási m-WO₃-t tartalmazta. **11** (70– 90 nm) nagyobb mértékben alakult át APT-vé (2. ábra). Ennek az oka, hogy a nagyobb részecskeméret lassítja a reakció sebességét. 0,15 kPa-n **9** (70–90 nm) esetében nagyon apró APT-csúcsok voltak csak megfigyelhetőek. **5** (100–300 nm) teljesen a kiindulási oxid maradt. Ezen eredmények alapján arra a következtetésre jutottunk, hogy ha az NH_3 parciális nyomása túl alacsony, akkor a reakció túl lassú ahhoz, hogy 30 nap alatt észrevehető változást okozzon a kristályszerkezetben (2. ábra).

2. ábra. A reakciótermékek diffraktogramjai 30 nap után

ÖSSZEFOGLALÁS

Összefoglalásként elmondható, hogy sikerült elérni a kitűzött célokat, egy teljesen új módszerrel, szilárd-gázfázisú heterogén reakcióval sikerült APT-t előállítani. Az új módszer egyszerű, és nem érzékeny a reakció körülményeire, ellenben az összetettebb és érzékenyebb nedves kémiai eljárással. Emellett elsőként sikerült $(NH_4)_2W_2O_7 \cdot 0.5H_2O$ -t előállítanunk, illetve a W_5O_{14} és az APT·10H₂O esetében egy új előállítási módot találtunk.

IRODALOM

- E. Lassner, W. D. Schubert, Tungsten properties, chemistry, technology of the element, alloys, and chemical compounds, Kluwer Academic/Plenum Publishers, New York, 1999.
- [2] C. Hammond, J. Straus, M. Righettoni, S. E. Pratsinis, I. Hermans, Nanoparticulate tungsten oxide for catalytic epoxidations. ACS Catal. 3 (2013) 321–7.
- [3] C. Di Valentin, F. Wang, G. Pacchioni, Tungsten oxide in catalysis and photocatalysis: Hints from DFT. Topics Catal. 56 (2013) 1404–19.
- [4] G. M. Veith, A. R. Lupini, S. J. Pennycook, V. Alberto, L. Prati, N. J. Dudney, Magnetron sputtering of gold nanoparticles onto WO₃ and activated carbon. Catal Today 122 (2007) 248–53.
- [5] A. Phuruangrat, D. J. Ham, S. J. Hong, S. Thongtem, J. S. Lee, Synthesis of hexagonal WO₃ nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem. 20 (2010) 1683–90.
- [6] I. M. Szilágyi, B. Fórizs, O. Rosseler, Á. Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K. Varga–Josepovits, K. László, A. L. Tóth, P. Baranyai, M. Leskelä, WO₃ photocatalysts: influence of structure and composition. J Catal. 294 (2012) 119–27.
- [7] C. T. Lin, T. H. Tsai, Solution volume effect of photodegradation by 1-D WO₃ nanorods via microwave-assisted solvothermal heating under the UV irradiation. Asian J Chem. 25 (2013) 7098–102.
- [8] A. B. D. Nandiyanto, O. Arutanti, T. Ogi, F. Iskandar, T. O. Kim, K. Okuyama, Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chem Eng Sci. 101 (2013) 523–32.
- [9] B. X. Liu, J. S. Wang, H. Y. Li, J. S. Wu, M. L. Zhou, T. Y. Zuo, Facile synthesis of hierarchical hollow mesoporous Ag/WO₃ spheres with high photocatalytic performance. J Nanosci Nanotech. 13 (2013) 4117–22.
- [10] E. Karacsonyi, L. Baia, A. Dombi, V. Danciu, K. Mogyorosi, L. C. Pop, G. Kovacs, V. Cosoveanu, A. Vulpoi, S. Simon, Z. Pap, The photocatalytic activity of TiO₂/WO₃/ noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition. Catal Today 208 (2013) 19–27.
- [11] I. M. Szilágyi, S. Saukko, J. Mizsei, A. L. Tóth, J. Madarász, G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO₃ to H₂S. Solid State Sci. 12 (2010) 1857– 60.
- [12] I. M. Szilágyi, L. Wang, P. I. Gouma, C. Balázsi, J. Madarász, G. Pokol, Preparation of hexagonal WO₃ from hexagonal ammonium tungsten bronze for sensing NH₃. Mater Res Bull. 44 (2009) 505–8.
- [13] C. Balázsi, L. Wang, E. O. Zayim, I. M. Szilágyi, K. Sedlackova, J. Pfeifer, A. L. Tóth, P. I. Gouma, Nanosize hexagonal tungsten oxide for gas sensing applications. J Eur Ceram Soc. 28 (2008) 913–7.
- [14] I. M. Szilágyi, S. Saukko, J. Mizsei, P. Király, G. Tárkányi, A. L. Tóth, A. Szabó, K. Varga-Josepovits, J. Madarász, G. Pokol, Controlling the composition of nanosize hexagonal WO₃ for gas sensing. Mater Sci Forum 589 (2008) 161–5.
- [15] L. Wang, J. Pfeifer, C. Balázsi, I. M. Szilágyi, P. I. Gouma, Nanostructured hexagonal tungsten oxides for ammonia sensing. Proceedings of SPIE – The International Society for Optical Engineering "Nanosensing: Materials, Devices, and Systems III. 2007,6769:67690E.

Hunyadi D.: AZ AMMÓNIUM-PARAVOLFRAMÁT... LÉTÜNK 2014/4. 73–82.

- [16] C. Balázsi, K. Sedlackova, J. Pfeifer, A. L. Tóth, E. A. Zayim, I. M. Szilágyi, L. S. Wang, K. Kalyanasundaram, P. I. Gouma, Synthesis and examination of hexagonal Tungsten oxide nanocrystals for electrochromic and sensing applications. NATO Science for Peace and Security Series C: Environmental Security; Sensors for Environment, Health and Security. 2009: 77–91.
- [17] J. Kukkola, M. Mohl, A. R. Leino, J. Maklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, K. Kordas, Room temperature hydrogen sensors based on metal decorated WO₃ nanowires. Sens Actuat B. 186 (2013) 90–5.
- [18] Y. D. Zhang, W. W. He, H. X. Zhao, P. J. Li, Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO, microspheres. Vacuum. 95 (2013) 30–4.
- [19] C. Moreno-Castilla, M. A. Alvarez-Merino, F. Carrasco-Marín, J. L. G. Fierro, Tungsten and tungsten carbide supported on activated carbon: surface structures and performance for ethylene hydrogenation. Langmuir 17 (2001) 1752–6.
- [20] A. Szymańska-Kolasa, M. Lewandowski, C. Sayag, G. Djéga-Mariadassou, Comparions of molybdenum carbide for the hydrodesulfurization of dibenzithiophene. CatalToday. 119 (2007) 7–12.
- [21] A. Biedunkiewicz, A. Szymczyk, J. Chrosciechowska, Oxidation of (Ti,W)C ceramic powders. J Therm Anal Calorim. 77 (2004) 75–83.
- [22] S. Kano, T. Inoue, Surface softening and hardening of WC-Co using pulsed laser irradiation. Surf Coat Tech. 201 (2006) 223–9.
- [23] H. C. Kim, I. J. Shon, J. K. Yoon, J. M. Doh, Consolidation of ultra fine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties. Int J Refract Metal Hard Mater. 25 (2007) 46–52.
- [24] I. M. Szilágyi, J. Madarász, G. Pokol, F. Hange, G. Szalontai, K. Varga-Josepovits, A. L. Tóth, The effect of K⁺ ion doping on the structure and thermal reduction of hexagonal ammonium tungsten bronze. J Therm Anal Calorim. 97 (2009) 11–8.
- [25] L. Bartha, J. Neugebauer, Aspects of Effective Doping and the Incorporation of Dopant. Int J Refract Metal Hard Mater. 13 (1995) 1–34.
- [26] E. Pink, L. Bartha, The Metallurgy of Doped/Non-Sag Tunsgten. London: Elsevier; 1989.
- [27] J. W. van Put, Crystallisation and Processing of Ammonium Paratungstate (APT). Int J Refract Metal Hard Mater. 13 (1995) 61–76.
- [28] L. Bartha, B. A. Kiss, T. Szalay, Chemistry of tungsten oxide bronzes. Int J Refract Metal Hard Mater. 13 (1995) 77–91.
- [29] Chemical Apparatus Engineering, company brochure, Plansee AG, Austria 2/97.
- [30] E. Okorn, G. Leichtfried, in: Proc. 7th Int. Tungsten Symposium, Goslar, pp. 361–370, ITIA, London 1997.
- [31] Tungsten-Based Products, company brochure, Ashot Ashkelon, Israel 11/92.
- [32] Tungsten, company brochure, Plansee AG, Austria 3/95.
- [33] M. Zumer, V. Nemanic, B. Zajec, M. Wang, J. Wang, Y. Liu, L. M. Peng, The Field-Emission and Current-Voltage Characteristics of Individual W₅O₁₄ Nanowires., J. Phy. Chem. Letters. 112 (2008) 5250–5253.
- [34] M. A. Dahlborg, G. Svensson, M. Valkeapää, The Structure of Na₂W₂O₇,0,5H₂O Synthesized under High Pressure and Temperature. J. Sol. State Chem. 167 (2002) 525–533.
- [35] I. M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A. L. Tóth, A. Szabó, K. Varga-Josepovits, Stability and Contorlled Composition of Hexagonal WO₃, Chem. Mater. 20 (2008) 4116–25.

The Development of Alternative Production of Ammonium-Paravolframate, $(NH_4)_{10}[H_2W_{12}O_{42}]\cdot 4H_2O$, Industrial Raw Material

Ammonium-paravolframate (APT) is the most important raw material of wolfram, from which different wolfram-oxides, wolfram-carbide and metal wolfram can be produced. Today, APT is industrially produced by multilevel wet chemical processing. This study was aimed at studying the possibility of APT production by solid-gas phase reaction between WO_3 , NH_3 and H_2O . Alongside with studying the reaction, the effect of reaction conditions on reaction products was also examined: the composition, the structure and particle size of WO_3 powder, and the partial pressure of NH_3 .

APT developed by us was characterized by XRD, Raman, FTIR, TG/DTA-MS measures, concluding that it matches the commercial APT and can replace it. The SEM and TEM scans showed that nanoparticle APT was successfully produced, which has not been achieved previously.

Key words: ammonium-paravolframate, solid-gas phase, heterogeneous reaction, WO₃, NH₃

Proizvodnja industrijske sirovine amonijum-paravolframata $(NH_4)_{10}[H_2W_{12}O_{42}]\cdot 4H_2O$ pomoću nove, čvrste-gasfazne heterogene reakcije

Amonijum-paravolframat (APT) je najvažnija sirovina za industrijsku proizvodnju volframa, od čega se proizvode različiti oksidi volframa, volfram-karbidi i metalni volfram. Danas se industrijska proizvodnja ATP se izvodi pomoću višefaznog, mokrog hemijskog procesa. U ovom radu smo ispitivali da li je moguće proizvoditi ATP heterogenom reakcijom koja se odigrava između čvrstog WO₃ i NH₃ odnosno H₂O u gasnoj fazi. Osim proučavanja reakcije ispitivali smo i uticaj reakcione sredine na proizvode: sastav praha WO₃, njegova struktura, veličina granulacije, parcijalni pritisak NH₃ APT koji smo proizveli karakterizirali XRD-, Raman-, FTIR-, i TG/DTA-MS-merenjima. Došli smo do zaključka, da je naš proizvod identičan sa komercijalno dostupnim ATP-om, te da može da ga zameni. Na SEM- i TEM-snimcima je bilo vidljivo da smo uspeli proizvoditi APT u obliku nanogranula, što do sada niko nije uspeo.

Ključne reči: amonijum-paravolframat, čvrsto-gasno fazna reakcija, heterogena reakcija, WO₃, NH₃

Beérkezés időpontja: 2014. 10. 25. Közlésre elfogadva: 2014. 11. 30.